ppo-LunarLander-v2 / config.json
JiemingYou's picture
Upload PPO LunarLander-v2 trained agent
648fcd0
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bd85a939ea0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bd85a939f30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bd85a939fc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bd85a93a050>", "_build": "<function ActorCriticPolicy._build at 0x7bd85a93a0e0>", "forward": "<function ActorCriticPolicy.forward at 0x7bd85a93a170>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bd85a93a200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bd85a93a290>", "_predict": "<function ActorCriticPolicy._predict at 0x7bd85a93a320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bd85a93a3b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bd85a93a440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bd85a93a4d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bd867b99e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690902856123545496, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJofHbxIVZi6Ymjcuh4o27UV8wW7U5f+OQAAgD8AAIA/s6F3vd0yUz9eBZK9+J8AvyS9G76tROe9AAAAAAAAAAAz85e9TYcrPqKoGz7eHZa+hLgGPTkwEb0AAAAAAAAAAIAzAL6+H5g/5XDEvk4aBb92LFS+HvMVvgAAAAAAAAAAZgQbvIAGdD+6Yqi9I7rrviPmPbwNms29AAAAAAAAAAAzuyW9CrcyuTJ60TlRLV+0dVZvu7Ll97gAAIA/AACAP2Z2K72FW6q70oXbO6H7nzzBHBU9simHvQAAgD8AAIA/mko4PQRnij3wR7i8xjhQvhYHAz1uwYC9AAAAAAAAAABm5t666pqjPy4Ikryi1ym/hDO2vOCGqb0AAAAAAAAAABNRA750w50/ufYAv5ElG7+AUiO+UpN3vgAAAAAAAAAAYKU6vqwj8D5u84Q+2fOWvgM9gDxiCF89AAAAAAAAAAAzh+c7w4FoulNObbmreAYzKAetuoCfiDgAAIA/AACAPwMloD4bzyY/02gtPrz/7b7yWrA+o0UXvgAAAAAAAAAAM2WGvEwwHT7TFxG+oEtnvhgkIb0a6628AAAAAAAAAABmprY8VQyyP6ymDT8IloW+4wt9vJd6Nr0AAAAAAAAAAC3dij60MS0/YySZPave2r7eo5s+1kYGvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHLYduHerOMAWyUTQEBjAF0lEdAlUamk8A7xXV9lChoBkdAbohAQg9vCWgHS/BoCEdAlUbc4gieNHV9lChoBkdAcXXPXCj1w2gHS/xoCEdAlUbluNxVAHV9lChoBkdAckVY77sOXmgHTS4BaAhHQJVHD+ee4Cp1fZQoaAZHQHKdb1M/QjVoB00hAWgIR0CVR8BH09QodX2UKGgGR0BIto5HVf/naAdLw2gIR0CVR9R6Ww/xdX2UKGgGR0Bw7rldTo+waAdNagFoCEdAlUiLp/wy7HV9lChoBkdAcCQBtUGVzWgHTRkBaAhHQJVI7uTibUh1fZQoaAZHQHE8d4RmK65oB00DAWgIR0CVSSAbhm5EdX2UKGgGR0BwzvW3BpHqaAdL8mgIR0CVSRy+pOvddX2UKGgGR0BxWhjMFEApaAdNHAFoCEdAlUmsdYGMXXV9lChoBkdAcZoF1SwW32gHTQoBaAhHQJVJrQ/oq1B1fZQoaAZHQG5Nil7+kxhoB00CAWgIR0CVSgos7MgVdX2UKGgGR0Bxzco9cKPXaAdL2WgIR0CVTJDWsijddX2UKGgGR0BxgptelbeNaAdNDAFoCEdAlUy8ophF3XV9lChoBkdAc0T9LYf4h2gHTR4BaAhHQJVODxBmf5F1fZQoaAZHQHMEuJpFkQRoB00MAWgIR0CVTvHRCx/vdX2UKGgGR0BwIRyLhrFgaAdL3mgIR0CVTzTA31jBdX2UKGgGR0Bx5xTtLL6laAdNRgFoCEdAlU91G0/nn3V9lChoBkdAciqKNhmXgWgHTSABaAhHQJVPfhKlHjJ1fZQoaAZHQHDg/RZ2ZApoB00vAWgIR0CVT86STyJ9dX2UKGgGR0BxY3ljmSyMaAdNEwFoCEdAlVBAsXizcHV9lChoBkdAc1r5mRNh3WgHTSgBaAhHQJVQ8WWQfZF1fZQoaAZHQHKl3vc8DCBoB00IAWgIR0CVUUmNzbN9dX2UKGgGR0BxA+k0rK/3aAdNAgFoCEdAlVFUrsjVx3V9lChoBkdAcA3R/ViF02gHTQsBaAhHQJVSe/+Kjzt1fZQoaAZHQG5IzfrKNhpoB00yAWgIR0CVUxVu76HkdX2UKGgGR0BxyC7Ackt3aAdNLQFoCEdAlVRhzaK1onV9lChoBkdAcUi4WUKRdWgHTU8BaAhHQJVVAtf5ULl1fZQoaAZHQG/RPYnOSntoB00VAWgIR0CVV2KIi1RcdX2UKGgGR0Bt+BJkGzKLaAdL6WgIR0CVWDF9a2WqdX2UKGgGR0BzM6t+1Bt2aAdNFwFoCEdAlViRWPtD2XV9lChoBkdAciLZ/0/W2GgHS+5oCEdAlViehCdBjXV9lChoBkdAbjizByjpLWgHTQYBaAhHQJVZDzAeq711fZQoaAZHQG6WYgJTl1doB00TAWgIR0CVWRIP9UCJdX2UKGgGR0BuVktPHktFaAdL5mgIR0CVWUjebd8BdX2UKGgGR0BzSo7Rv3rVaAdNUgFoCEdAlWmnTiKiwnV9lChoBkdAcFKBY3eenWgHS+VoCEdAlWnQla8pTnV9lChoBkdAcj60r9VFQWgHTQQBaAhHQJVqmV6eGwl1fZQoaAZHQHLLLowEhaFoB01GAWgIR0CVatTP0I1MdX2UKGgGR0ByoUGxD9fkaAdNOAFoCEdAlWsqeoUBXHV9lChoBkdAcMOlZX+2mmgHS/hoCEdAlWt9x2jfvXV9lChoBkdAciAn3L3bmGgHS/xoCEdAlWx9ld1Md3V9lChoBkdAcN3e/Yao/GgHTTUBaAhHQJVsoFbFCLN1fZQoaAZHQEvm5Ke05U9oB0u5aAhHQJVtQe6qbSZ1fZQoaAZHQHLGzW07bL5oB00QAWgIR0CVbVuez2OAdX2UKGgGR0BubEtf5ULlaAdNCQFoCEdAlW6wMx46fnV9lChoBkdAcC+6nzg/DGgHS/loCEdAlW9bo4dZJXV9lChoBkdAc5z19v0h/2gHS+xoCEdAlW9rrTpgTnV9lChoBkdAcSsbPhQ3xWgHTQABaAhHQJVvhCQcPvt1fZQoaAZHQHBw4REnb7FoB0vqaAhHQJVvmEVWS2Z1fZQoaAZHQHK6rfUF0PpoB00DAWgIR0CVcBJGvwEydX2UKGgGR0Bw4hJI1+AmaAdNAQFoCEdAlXB1LamGd3V9lChoBkdAcGBmthd+omgHTQwBaAhHQJVwkQYk3S91fZQoaAZHQHCIsk+otMBoB0vdaAhHQJVw5XDFZPl1fZQoaAZHQGy70kfLcKxoB00PAWgIR0CVcchZyMkydX2UKGgGR0BQX3nIQvpRaAdLvmgIR0CVckoUzsQedX2UKGgGR0BwB5tcfNiZaAdNMAFoCEdAlXJydat9yHV9lChoBkdAcz8JAt4A0mgHTR0BaAhHQJVy4rI5o5B1fZQoaAZHQHLZws052hZoB00BAWgIR0CVcypLEk0KdX2UKGgGR0BweO0w8GLUaAdL9GgIR0CVc8mXw9aEdX2UKGgGR0BxCIyzollcaAdNFQFoCEdAlXPWVu76HnV9lChoBkdAcfoWt2cJ+mgHS99oCEdAlXUjjR2KVXV9lChoBkdAT7OVAzHjqGgHS9NoCEdAlXV0gB91EHV9lChoBkdAc0O+DOC5E2gHS+9oCEdAlXXFW4mTknV9lChoBkdAbW/IsiB5HGgHS/9oCEdAlXX39zfaYnV9lChoBkdAbS0rAgxJumgHTRsBaAhHQJV2F/7SApd1fZQoaAZHQHQdtNBWxQloB00GAWgIR0CVdkt1IRRNdX2UKGgGR0BzGZ6fJ3gUaAdL6GgIR0CVdmoEB8x9dX2UKGgGR0BuOZL0z0pWaAdNHgFoCEdAlXgwt4A0bnV9lChoBkdAce94mkWRBGgHTToBaAhHQJV4kTXarWB1fZQoaAZHQHGa8VxjriVoB0v9aAhHQJV4w2hqTKV1fZQoaAZHQG5mMvIwM6RoB00bAWgIR0CVeRQBxPwedX2UKGgGR0BxZLYtg8bJaAdL4mgIR0CVeZuEEkjYdX2UKGgGR0BxKPUTcqOMaAdNCgFoCEdAlXmyIHkcTHV9lChoBkdAbEPZSvTw2GgHTQQBaAhHQJV50B2fTTh1fZQoaAZHQHL/VFtsN2FoB004AWgIR0CVelsV+I/JdX2UKGgGR0Bx31uQ6p5vaAdNGgFoCEdAlXrm5MDfWXV9lChoBkdAbxG2nbZezGgHTQMBaAhHQJV7ul/H5rR1fZQoaAZHQHA8Ufkmx+toB0v6aAhHQJV8Gzv7WNF1fZQoaAZHQHAg11KXfIloB0v8aAhHQJV8Wk+HJtB1fZQoaAZHQG+672USqVBoB00AAWgIR0CVfMk8zQ/pdX2UKGgGR0BweFvhqCYkaAdNIAFoCEdAlXzOhTOxB3V9lChoBkdAbi7QID5j6WgHTQkBaAhHQJV9Gm8/Uvx1fZQoaAZHQHN5KSxJNCZoB00VAWgIR0CVfRhlDneSdX2UKGgGR0BwvmRyOq//aAdL6mgIR0CVfgrBj4HpdX2UKGgGR0BTtSKrJbMYaAdLzWgIR0CVfiMspXp4dX2UKGgGR0BwmEccU/OdaAdL22gIR0CVfi3IMjNZdX2UKGgGR0BxXUvVVghKaAdNEgFoCEdAlX9Lk0aZQnV9lChoBkdAcn1LytmthmgHS/doCEdAlYALHyVfNXV9lChoBkdAcLOfSx7iQ2gHS/9oCEdAlYAOenQ6ZHV9lChoBkdAcXo3o9s7+2gHTRcBaAhHQJWA98KG+K11fZQoaAZHQHDZpgCwKShoB00eAWgIR0CVgyiADq4ZdX2UKGgGR0BzJ+AvtdAxaAdNNAFoCEdAlYMozN2TxHV9lChoBkdAcWrLpA2Q4mgHTQ0BaAhHQJWDsCA+Y+l1fZQoaAZHQEw2axX4j8loB0u1aAhHQJWD8OlO45N1fZQoaAZHQD+fd9Dx9XtoB0u+aAhHQJWEcg5imVJ1fZQoaAZHQHEQzlYEGJNoB00XAWgIR0CVhJdH2AXmdX2UKGgGR0BwAPI8yN4raAdNCwFoCEdAlYUZ7PY4AHV9lChoBkdAcXZwcHWz4WgHTSEBaAhHQJWFTA+IM0B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}