--- tags: - generated_from_trainer datasets: - klue metrics: - accuracy model_index: - name: bert-base-finetuned-nli results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: nli metric: name: Accuracy type: accuracy value: 0.32566666666666666 --- # bert-base-finetuned-nli This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.9635 - Accuracy: 0.3257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 196 | 0.9635 | 0.3257 | | No log | 2.0 | 392 | 0.6451 | 0.107 | | 0.7364 | 3.0 | 588 | 0.5975 | 0.0987 | | 0.7364 | 4.0 | 784 | 0.5967 | 0.0867 | | 0.7364 | 5.0 | 980 | 0.6034 | 0.087 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3