JingzeShi commited on
Commit
5985681
verified
1 Parent(s): cf3da55

Upload DogeForCausalLM

Browse files
Files changed (6) hide show
  1. README.md +199 -0
  2. config.json +37 -0
  3. configuration_doge.py +189 -0
  4. generation_config.json +7 -0
  5. model.safetensors +3 -0
  6. modeling_doge.py +1103 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 馃 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./results/Doge-60M-Instruct",
3
+ "architectures": [
4
+ "DogeForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_doge.DogeConfig",
9
+ "AutoModelForCausalLM": "modeling_doge.DogeForCausalLM"
10
+ },
11
+ "bos_token_id": 1,
12
+ "eos_token_id": 2,
13
+ "expert_retrieval_size": 256,
14
+ "hidden_act": "silu",
15
+ "hidden_bias": false,
16
+ "hidden_dropout": 0.0,
17
+ "hidden_size": 512,
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 2048,
20
+ "is_moe": false,
21
+ "max_position_embeddings": 2048,
22
+ "model_type": "doge",
23
+ "num_attention_heads": 4,
24
+ "num_cdmmoe_experts": 4096,
25
+ "num_cdmmoe_experts_per_head": 8,
26
+ "num_cdmmoe_heads": 4,
27
+ "num_hidden_layers": 8,
28
+ "pad_token_id": 0,
29
+ "rms_norm_eps": 1e-06,
30
+ "rope_scaling": null,
31
+ "rope_theta": 10000.0,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "float32",
34
+ "transformers_version": "4.46.1",
35
+ "use_cache": true,
36
+ "vocab_size": 32768
37
+ }
configuration_doge.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Jingze Shi and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on the Wonderful Matrices paper implementation.
5
+ #
6
+ # https://arxiv.org/abs/2412.11834
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+ """PyTorch Doge model configuration"""
20
+
21
+ from transformers.configuration_utils import PretrainedConfig
22
+ from transformers.modeling_rope_utils import rope_config_validation
23
+
24
+
25
+ class DogeConfig(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`DogeModel`]. It is used to instantiate an Doge
28
+ model according to the specified arguments, defining the model architecture like [LoserCheems/doge-tiny-test](https://huggingface.co/LoserCheems/doge-tiny-test)
29
+
30
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
31
+ documentation from [`PretrainedConfig`] for more information.
32
+
33
+ Args:
34
+ vocab_size (`int`, *optional*, defaults to 32768):
35
+ Vocabulary size of the Doge model. Defines the number of different tokens that can be represented by the
36
+ `inputs_ids` passed when calling [`DogeModel`]
37
+ hidden_size (`int`, *optional*, defaults to 1024):
38
+ Dimension of the hidden representations.
39
+ intermediate_size (`int`, *optional*, defaults to 4096):
40
+ Dimension of the CDMoE representations.
41
+ num_hidden_layers (`int`, *optional*, defaults to 16):
42
+ Number of hidden layers in the Transformer decoder.
43
+ hidden_bias (`bool`, *optional*, defaults to `False`):
44
+ Whether to use bias in the hidden layers.
45
+ hidden_dropout (`float`, *optional*, defaults to 0.0):
46
+ Dropout probability for each sequence transformation and state transformation module.
47
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
48
+ The non-linear activation function (function or string) in the decoder.
49
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
50
+ The maximum sequence length that this model might ever be used with.
51
+ rope_theta (`float`, *optional*, defaults to 10000.0):
52
+ The base period of the RoPE embeddings.
53
+ rope_scaling (`Dict`, *optional*):
54
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
55
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
56
+ accordingly.
57
+ Expected contents:
58
+ `rope_type` (`str`):
59
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
60
+ 'llama3'], with 'default' being the original RoPE implementation.
61
+ `factor` (`float`, *optional*):
62
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
63
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
64
+ original maximum pre-trained length.
65
+ `original_max_position_embeddings` (`int`, *optional*):
66
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
67
+ pretraining.
68
+ `attention_factor` (`float`, *optional*):
69
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
70
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
71
+ `factor` field to infer the suggested value.
72
+ `beta_fast` (`float`, *optional*):
73
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
74
+ ramp function. If unspecified, it defaults to 32.
75
+ `beta_slow` (`float`, *optional*):
76
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
77
+ ramp function. If unspecified, it defaults to 1.
78
+ `short_factor` (`List[float]`, *optional*):
79
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
80
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
81
+ size divided by the number of attention heads divided by 2
82
+ `long_factor` (`List[float]`, *optional*):
83
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
84
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
85
+ size divided by the number of attention heads divided by 2
86
+ `low_freq_factor` (`float`, *optional*):
87
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
88
+ `high_freq_factor` (`float`, *optional*):
89
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
90
+ initializer_range (`float`, *optional*, defaults to 0.02):
91
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
92
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
93
+ The epsilon used by the rms normalization layers.
94
+ use_cache (`bool`, *optional*, defaults to `True`):
95
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
96
+ relevant if `config.is_decoder=True`.
97
+ pad_token_id (`int`, *optional*, defaults to 0):
98
+ Padding token id.
99
+ bos_token_id (`int`, *optional*, defaults to 1):
100
+ Beginning of stream token id.
101
+ eos_token_id (`int`, *optional*, defaults to 2):
102
+ End of stream token id.
103
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
104
+ Whether to tie weight embeddings
105
+ num_attention_heads (`int`, *optional*, defaults to 8):
106
+ Number of attention heads for each attention layer in the Transformer decoder.
107
+ attention_dropout (`float`, *optional*, defaults to 0.0):
108
+ The dropout ratio for the attention probabilities.
109
+ is_moe (`bool`, *optional*, defaults to `False`):
110
+ Whether to use the Cross Domain Mixture of Experts, if `True`, the MoE will inherit the MLP to initialize
111
+ num_cdmmoe_experts (`int`, *optional*, defaults to 4096):
112
+ Number of Private Experts for the Cross Domain Mixture of Experts.
113
+ num_cdmmoe_heads (`int`, *optional*, defaults to 4):
114
+ Number of heads of Private Experts for the Cross Domain Mixture of Experts.
115
+ num_cdmmoe_experts_per_head (`int`, *optional*, defaults to 8):
116
+ Number of Private Experts per head for the Cross Domain Mixture of Experts.
117
+ expert_retrieval_size (`int`, *optional*, defaults to 256):
118
+ Dimension of the Expert retrieval states for the Cross Domain Mixture of Experts.
119
+ """
120
+
121
+ model_type = "doge"
122
+ keys_to_ignore_at_inference = ["past_key_values"]
123
+
124
+ def __init__(
125
+ self,
126
+ vocab_size=32768,
127
+ hidden_size=1024,
128
+ intermediate_size=4096,
129
+ num_hidden_layers=16,
130
+ hidden_bias=False,
131
+ hidden_dropout=0.0,
132
+ hidden_act="silu",
133
+ max_position_embeddings=2048,
134
+ rope_theta=10000.0,
135
+ rope_scaling=None,
136
+ initializer_range=0.02,
137
+ rms_norm_eps=1e-06,
138
+ use_cache=True,
139
+ pad_token_id=0,
140
+ bos_token_id=1,
141
+ eos_token_id=2,
142
+ tie_word_embeddings=False,
143
+ num_attention_heads=8,
144
+ attention_dropout=0.0,
145
+ is_moe=False,
146
+ num_cdmmoe_experts=4096,
147
+ num_cdmmoe_heads=4,
148
+ num_cdmmoe_experts_per_head=8,
149
+ expert_retrieval_size=256,
150
+ **kwargs,
151
+ ):
152
+ self.vocab_size = vocab_size
153
+ self.hidden_size = hidden_size
154
+ self.intermediate_size = intermediate_size
155
+ self.num_hidden_layers = num_hidden_layers
156
+ self.hidden_bias = hidden_bias
157
+ self.hidden_dropout = hidden_dropout
158
+ self.hidden_act = hidden_act
159
+ self.max_position_embeddings = max_position_embeddings
160
+ self.rope_theta = rope_theta
161
+ self.rope_scaling = rope_scaling
162
+ self.initializer_range = initializer_range
163
+ self.rms_norm_eps = rms_norm_eps
164
+ self.use_cache = use_cache
165
+ self.pad_token_id = pad_token_id
166
+ self.bos_token_id = bos_token_id
167
+ self.eos_token_id = eos_token_id
168
+ self.tie_word_embeddings = tie_word_embeddings
169
+ self.num_attention_heads = num_attention_heads
170
+ self.attention_dropout = attention_dropout
171
+ self.is_moe = is_moe
172
+ self.num_cdmmoe_experts = num_cdmmoe_experts
173
+ self.num_cdmmoe_heads = num_cdmmoe_heads
174
+ self.num_cdmmoe_experts_per_head = num_cdmmoe_experts_per_head
175
+ self.expert_retrieval_size = expert_retrieval_size
176
+
177
+ # Validate the correctness of rotary position embeddings parameters
178
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
179
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
180
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
181
+ rope_config_validation(self)
182
+
183
+ super().__init__(
184
+ pad_token_id=pad_token_id,
185
+ bos_token_id=bos_token_id,
186
+ eos_token_id=eos_token_id,
187
+ tie_word_embeddings=tie_word_embeddings,
188
+ **kwargs,
189
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.46.1"
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb865063ca9536a49054948ea12f7d90519ee363ee98c5fff7bc2de6f82e0a86
3
+ size 268580408
modeling_doge.py ADDED
@@ -0,0 +1,1103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Jingze Shi and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on the Wonderful Matrices paper implementation.
5
+ #
6
+ # https://arxiv.org/abs/2412.11834
7
+ #
8
+ # Licensed under the Apache License, Version 2.0 (the "License");
9
+ # you may not use this file except in compliance with the License.
10
+ # You may obtain a copy of the License at
11
+ #
12
+ # http://www.apache.org/licenses/LICENSE-2.0
13
+ #
14
+ # Unless required by applicable law or agreed to in writing, software
15
+ # distributed under the License is distributed on an "AS IS" BASIS,
16
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17
+ # See the License for the specific language governing permissions and
18
+ # limitations under the License.
19
+ """PyTorch Doge model."""
20
+
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.nn.functional as F
26
+ import torch.utils.checkpoint
27
+ from torch import nn
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
31
+ from transformers.generation import GenerationMixin
32
+ from transformers.modeling_outputs import (
33
+ BaseModelOutputWithPast,
34
+ CausalLMOutputWithPast,
35
+ SequenceClassifierOutputWithPast,
36
+ )
37
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
38
+ from transformers.modeling_utils import PreTrainedModel
39
+ from transformers.utils import (
40
+ add_start_docstrings,
41
+ add_start_docstrings_to_model_forward,
42
+ logging,
43
+ replace_return_docstrings,
44
+ )
45
+ from .configuration_doge import DogeConfig
46
+
47
+ try:
48
+ from einx import add as einx_add
49
+ except ImportError:
50
+ einx_add = None
51
+
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+ _CONFIG_FOR_DOC = "DogeConfig"
56
+
57
+
58
+ class RMSNorm(nn.Module):
59
+ def __init__(self, hidden_size, eps=1e-6):
60
+ """
61
+ RMSNorm is equivalent to T5LayerNorm
62
+ """
63
+ super().__init__()
64
+ self.weight = nn.Parameter(torch.ones(hidden_size))
65
+ self.variance_epsilon = eps
66
+
67
+ def forward(self, hidden_states):
68
+ input_dtype = hidden_states.dtype
69
+ hidden_states = hidden_states.to(torch.float32)
70
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
71
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
72
+ return self.weight * hidden_states.to(input_dtype)
73
+
74
+ def extra_repr(self):
75
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
76
+
77
+
78
+ class Residual(nn.Module):
79
+ def __init__(self, hidden_size):
80
+ super().__init__()
81
+ self.weight = nn.Parameter(torch.ones(hidden_size))
82
+
83
+ def forward(self, residual_states, hidden_states):
84
+ return self.weight * residual_states + hidden_states
85
+
86
+ def extra_repr(self):
87
+ return f"{tuple(self.weight.shape)}"
88
+
89
+
90
+ class RotaryEmbedding(nn.Module):
91
+ def __init__(self, config: Optional[DogeConfig] = None):
92
+ super().__init__()
93
+ self.rope_kwargs = {}
94
+
95
+ if config.rope_scaling is None:
96
+ self.rope_type = "default"
97
+ else:
98
+ self.rope_type = config.rope_scaling
99
+ self.max_seq_len_cached = config.max_position_embeddings
100
+ self.original_max_seq_len = config.max_position_embeddings
101
+ self.base = config.rope_theta
102
+
103
+ self.config = config
104
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
105
+
106
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, **self.rope_kwargs)
107
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
108
+ self.original_inv_freq = self.inv_freq
109
+
110
+ def _dynamic_frequency_update(self, position_ids, device):
111
+ """
112
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
113
+ 1 - growing beyond the cached sequence length (allow scaling)
114
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
115
+ """
116
+ seq_len = torch.max(position_ids) + 1
117
+ if seq_len > self.max_seq_len_cached: # growth
118
+ inv_freq, self.attention_scaling = self.rope_init_fn(
119
+ self.config, device, seq_len=seq_len, **self.rope_kwargs
120
+ )
121
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
122
+ self.max_seq_len_cached = seq_len
123
+
124
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
125
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
126
+ self.max_seq_len_cached = self.original_max_seq_len
127
+
128
+ @torch.no_grad()
129
+ def forward(self, x, position_ids):
130
+ if "dynamic" in self.rope_type:
131
+ self._dynamic_frequency_update(position_ids, device=x.device)
132
+
133
+ # core RoPE block
134
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
135
+ position_ids_expanded = position_ids[:, None, :].float()
136
+ device_type = x.device.type
137
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
138
+ with torch.autocast(device_type=device_type, enabled=False):
139
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
140
+ emb = torch.cat((freqs, freqs), dim=-1)
141
+ cos = emb.cos()
142
+ sin = emb.sin()
143
+
144
+ cos = cos * self.attention_scaling
145
+ sin = sin * self.attention_scaling
146
+
147
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
148
+
149
+
150
+ def rotate_half(x):
151
+ """
152
+ Rotates half the hidden dims of the input.
153
+ """
154
+ x1 = x[..., : x.shape[-1] // 2]
155
+ x2 = x[..., x.shape[-1] // 2 :]
156
+ return torch.cat((-x2, x1), dim=-1)
157
+
158
+
159
+ def apply_QK_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
160
+ """Applies Rotary Position Embedding to the query and key tensors.
161
+
162
+ Args:
163
+ q (`torch.Tensor`): The query tensor.
164
+ k (`torch.Tensor`): The key tensor.
165
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
166
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
167
+ position_ids (`torch.Tensor`, *optional*):
168
+ Deprecated and unused.
169
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
170
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
171
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
172
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
173
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
174
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
175
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
176
+ Returns:
177
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
178
+ """
179
+ cos = cos.unsqueeze(unsqueeze_dim)
180
+ sin = sin.unsqueeze(unsqueeze_dim)
181
+ q_embed = (q * cos) + (rotate_half(q) * sin)
182
+ k_embed = (k * cos) + (rotate_half(k) * sin)
183
+ return q_embed, k_embed
184
+
185
+
186
+ class DogeDynamicMaskAttention(nn.Module):
187
+ """Dynamic Mask Attention from 'Wonderful Matrices' paper."""
188
+
189
+ def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
190
+ super().__init__()
191
+
192
+ self.config = config
193
+ self.layer_idx = layer_idx
194
+ if layer_idx is None:
195
+ logger.warning_once(
196
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
197
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
198
+ "when creating this class."
199
+ )
200
+
201
+ self.hidden_dim = config.hidden_size
202
+ self.num_attention_heads = config.num_attention_heads
203
+ self.attention_dropout = config.attention_dropout
204
+ self.attention_head_dim = self.hidden_dim // self.num_attention_heads
205
+
206
+ # Q K V O projections
207
+ self.q_proj = nn.Linear(
208
+ self.hidden_dim,
209
+ self.num_attention_heads * self.attention_head_dim,
210
+ bias=config.hidden_bias,
211
+ )
212
+ self.k_proj = nn.Linear(
213
+ self.hidden_dim,
214
+ self.num_attention_heads * self.attention_head_dim,
215
+ bias=config.hidden_bias,
216
+ )
217
+ # dynamic mask for the QK^T attention score matrix
218
+ self.A = nn.Parameter(
219
+ torch.ones(self.num_attention_heads)
220
+ )
221
+ self.dt_proj = nn.Linear(
222
+ self.hidden_dim,
223
+ self.num_attention_heads,
224
+ bias=config.hidden_bias,
225
+ )
226
+ self.v_proj = nn.Linear(
227
+ self.hidden_dim,
228
+ self.num_attention_heads * self.attention_head_dim,
229
+ bias=config.hidden_bias,
230
+ )
231
+ self.o_proj = nn.Linear(
232
+ self.hidden_dim,
233
+ self.hidden_dim,
234
+ bias=config.hidden_bias,
235
+ )
236
+
237
+ def forward(
238
+ self,
239
+ hidden_states: torch.Tensor,
240
+ attention_mask: Optional[torch.Tensor] = None,
241
+ position_ids: Optional[torch.LongTensor] = None,
242
+ past_key_value: Optional[Cache] = None,
243
+ cache_position: Optional[torch.LongTensor] = None,
244
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
245
+ **kwargs,
246
+ ) -> Tuple[torch.Tensor, Optional[Cache]]:
247
+ bsz, q_len, _ = hidden_states.shape
248
+
249
+ query_states = self.q_proj(hidden_states)
250
+ key_states = self.k_proj(hidden_states)
251
+ value_states = self.v_proj(hidden_states)
252
+
253
+ query_states = query_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(
254
+ 1, 2
255
+ )
256
+ key_states = key_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(
257
+ 1, 2
258
+ )
259
+ value_states = value_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(
260
+ 1, 2
261
+ )
262
+
263
+ cos, sin = position_embeddings
264
+ query_states, key_states = apply_QK_rotary_pos_emb(query_states, key_states, cos, sin)
265
+
266
+ if past_key_value is not None:
267
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
268
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
269
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
270
+
271
+ # compute attention scores matrix
272
+ attn_weights = torch.matmul(query_states, key_states.transpose(-1, -2)) / math.sqrt(self.attention_head_dim)
273
+
274
+ # add mask to attention scores
275
+ if attention_mask is not None:
276
+ dt_states = self.dt_proj(value_states.transpose(1, 2).reshape(bsz, value_states.shape[-2], -1))
277
+ dynamic_mask = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2)
278
+ dynamic_mask = dynamic_mask < 1.0
279
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]].masked_fill(dynamic_mask[:, :, None, :], torch.finfo(hidden_states.dtype).min)
280
+ attn_weights = attn_weights + causal_mask
281
+
282
+ # upcast attention scores to fp32
283
+ attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
284
+ attn_weights = F.dropout(attn_weights, p=self.attention_dropout, training=self.training)
285
+
286
+ # apply attention scores to value states
287
+ attn_output = torch.matmul(attn_weights, value_states)
288
+
289
+ attn_output = attn_output.transpose(1, 2).contiguous()
290
+ attn_output = attn_output.reshape(bsz, q_len, -1)
291
+ attn_output = self.o_proj(attn_output)
292
+
293
+ return attn_output, past_key_value
294
+
295
+
296
+ class DogeSdpaDynamicMaskAttn(DogeDynamicMaskAttention):
297
+
298
+ def forward(
299
+ self,
300
+ hidden_states: torch.Tensor,
301
+ attention_mask: Optional[torch.Tensor] = None,
302
+ position_ids: Optional[torch.LongTensor] = None,
303
+ past_key_value: Optional[Cache] = None,
304
+ cache_position: Optional[torch.LongTensor] = None,
305
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
306
+ **kwargs,
307
+ ) -> Tuple[torch.Tensor, Optional[Cache]]:
308
+ bsz, q_len, _ = hidden_states.shape
309
+
310
+ query_states = self.q_proj(hidden_states)
311
+ key_states = self.k_proj(hidden_states)
312
+ value_states = self.v_proj(hidden_states)
313
+
314
+ query_states = query_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(1, 2)
315
+ key_states = key_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(1, 2)
316
+ value_states = value_states.view(bsz, q_len, self.num_attention_heads, self.attention_head_dim).transpose(1, 2)
317
+
318
+ cos, sin = position_embeddings
319
+ query_states, key_states = apply_QK_rotary_pos_emb(query_states, key_states, cos, sin)
320
+
321
+ if past_key_value is not None:
322
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
323
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
324
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
325
+
326
+ if attention_mask is not None:
327
+ dt_states = self.dt_proj(value_states.transpose(1, 2).reshape(bsz, value_states.shape[-2], -1))
328
+ dynamic_mask = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2)
329
+ dynamic_mask = dynamic_mask < 1.0
330
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]].masked_fill(dynamic_mask[:, :, None, :], torch.finfo(hidden_states.dtype).min)
331
+
332
+ query_states = query_states.contiguous()
333
+ key_states = key_states.contiguous()
334
+ value_states = value_states.contiguous()
335
+
336
+ attn_output = F.scaled_dot_product_attention(
337
+ query_states,
338
+ key_states,
339
+ value_states,
340
+ attn_mask=causal_mask,
341
+ dropout_p=self.attention_dropout,
342
+ )
343
+
344
+ attn_output = attn_output.transpose(1, 2).contiguous()
345
+ attn_output = attn_output.view(bsz, q_len, -1)
346
+ attn_output = self.o_proj(attn_output)
347
+
348
+ return attn_output, past_key_value
349
+
350
+
351
+ DOGE_ATTENTION_CLASSES = {
352
+ "eager": DogeDynamicMaskAttention,
353
+ "sdpa": DogeSdpaDynamicMaskAttn,
354
+ }
355
+
356
+
357
+ class DogeMLP(nn.Module):
358
+
359
+ def __init__(self, config: DogeConfig):
360
+ super().__init__()
361
+ self.hidden_dim = config.hidden_size
362
+ self.intermediate_dim = config.intermediate_size
363
+ self.act_fn = ACT2FN[config.hidden_act]
364
+
365
+ self.gate_proj = nn.Linear(
366
+ self.hidden_dim,
367
+ self.intermediate_dim,
368
+ bias=config.hidden_bias,
369
+ )
370
+ self.up_proj = nn.Linear(
371
+ self.hidden_dim,
372
+ self.intermediate_dim,
373
+ bias=config.hidden_bias,
374
+ )
375
+ self.down_proj = nn.Linear(
376
+ self.intermediate_dim,
377
+ self.hidden_dim,
378
+ bias=config.hidden_bias,
379
+ )
380
+
381
+ def forward(
382
+ self,
383
+ hidden_states: torch.Tensor,
384
+ **kwargs,
385
+ ) -> torch.Tensor:
386
+ hidden_states = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
387
+ return hidden_states
388
+
389
+
390
+ class DogeCDMoE(DogeMLP):
391
+ """Cross Domain Mixture of Experts from 'Wonderful Matrices' paper."""
392
+
393
+ def __init__(self, config: DogeConfig):
394
+ super().__init__(config)
395
+ self.hidden_dim = config.hidden_size
396
+ self.act_fn = ACT2FN[config.hidden_act]
397
+
398
+ self.expert_retrieval_dim = config.expert_retrieval_size
399
+ self.num_cdmmoe_experts = config.num_cdmmoe_experts
400
+ self.num_cdmmoe_heads = config.num_cdmmoe_heads
401
+ self.num_cdmmoe_experts_per_head = config.num_cdmmoe_experts_per_head
402
+ self.num_keys = int(math.sqrt(self.num_cdmmoe_experts))
403
+
404
+ # queries and keys for retrieval experts
405
+ self.queries = nn.Linear(
406
+ self.hidden_dim,
407
+ self.num_cdmmoe_heads * self.expert_retrieval_dim,
408
+ bias=False,
409
+ )
410
+ self.keys = nn.Parameter(
411
+ torch.zeros(
412
+ self.num_cdmmoe_heads,
413
+ self.num_keys,
414
+ 2,
415
+ self.expert_retrieval_dim // 2,
416
+ )
417
+ )
418
+
419
+ # experts
420
+ self.down_embed = nn.Embedding(
421
+ self.num_cdmmoe_experts,
422
+ self.hidden_dim,
423
+ )
424
+ self.up_embed = nn.Embedding(
425
+ self.num_cdmmoe_experts,
426
+ self.hidden_dim,
427
+ )
428
+
429
+
430
+ def forward(
431
+ self,
432
+ hidden_states: torch.Tensor,
433
+ **kwargs,
434
+ ) -> torch.Tensor:
435
+ bsz, seq_len, _ = hidden_states.shape
436
+
437
+ # get similarity with queries and keys
438
+ queries = self.queries(hidden_states)
439
+ queries = queries.view(bsz, seq_len, 2, self.num_cdmmoe_heads, -1).permute(2, 0, 1, 3, 4)
440
+ sim = torch.einsum("p b t h n, h k p n -> p b t h k", queries, self.keys)
441
+
442
+ # get experts with the highest similarity
443
+ (scores_x, scores_y), (indices_x, indices_y) = sim.topk(self.num_cdmmoe_experts_per_head, dim=-1)
444
+ if einx_add is not None:
445
+ all_scores = einx_add("... i, ... j -> ... (i j)", scores_x, scores_y)
446
+ all_indices = einx_add("... i, ... j -> ... (i j)", indices_x * self.num_keys, indices_y)
447
+ else:
448
+ all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
449
+ all_scores = all_scores.view(*scores_x.shape[:-1], -1)
450
+ all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
451
+ all_indices = all_indices.view(*indices_x.shape[:-1], -1)
452
+ scores, pk_indices = all_scores.topk(self.num_cdmmoe_experts_per_head, dim=-1)
453
+ indices = all_indices.gather(-1, pk_indices)
454
+ down_embed = self.down_embed(indices)
455
+ up_embed = self.up_embed(indices)
456
+
457
+ # mix experts states with cross domain states
458
+ experts_weights = torch.einsum("b t d, b t h k d -> b t h k", hidden_states, down_embed)
459
+ experts_weights = self.act_fn(experts_weights) * scores.softmax(dim=-1)
460
+ experts_states = torch.einsum("b t h k, b t h k d -> b t d", experts_weights, up_embed)
461
+ hidden_states = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
462
+ hidden_states = hidden_states + experts_states
463
+ return hidden_states
464
+
465
+
466
+ class DogeDecoderLayer(nn.Module):
467
+ def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
468
+ super().__init__()
469
+ self.hidden_dropout = config.hidden_dropout
470
+
471
+ self.pre_sequence_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
472
+ self.attn = DOGE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
473
+ self.post_sequence_residual = Residual(config.hidden_size)
474
+
475
+ self.pre_state_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
476
+ self.feed_forward = DogeMLP(config) if config.is_moe == False else DogeCDMoE(config)
477
+ self.post_state_residual = Residual(config.hidden_size)
478
+
479
+ def forward(
480
+ self,
481
+ hidden_states: torch.Tensor,
482
+ attention_mask: Optional[torch.Tensor] = None,
483
+ position_ids: Optional[torch.LongTensor] = None,
484
+ past_key_value: Optional[Cache] = None,
485
+ output_attentions: Optional[bool] = False,
486
+ use_cache: Optional[bool] = False,
487
+ cache_position: Optional[torch.LongTensor] = None,
488
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
489
+ **kwargs,
490
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
491
+ """
492
+ Args:
493
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
494
+ attention_mask (`torch.FloatTensor`, *optional*):
495
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
496
+ query_sequence_length, key_sequence_length)` if default attention is used.
497
+ output_attentions (`bool`, *optional*):
498
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
499
+ returned tensors for more detail.
500
+ use_cache (`bool`, *optional*):
501
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
502
+ (see `past_key_values`).
503
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
504
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
505
+ Indices depicting the position of the input sequence tokens in the sequence
506
+ position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
507
+ Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
508
+ with `head_dim` being the embedding dimension of each attention head.
509
+ kwargs (`dict`, *optional*):
510
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
511
+ into the model
512
+ """
513
+
514
+ # sequence transformation
515
+ residual = hidden_states
516
+ hidden_states = self.pre_sequence_layernorm(hidden_states)
517
+ hidden_states, present_key_value = self.attn(
518
+ hidden_states=hidden_states,
519
+ attention_mask=attention_mask,
520
+ position_ids=position_ids,
521
+ past_key_value=past_key_value,
522
+ cache_position=cache_position,
523
+ position_embeddings=position_embeddings,
524
+ **kwargs,
525
+ )
526
+ self_attn_weights = None
527
+ hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
528
+ hidden_states = self.post_sequence_residual(residual, hidden_states)
529
+
530
+ # state transformation
531
+ residual = hidden_states
532
+ hidden_states = self.pre_state_layernorm(hidden_states)
533
+ hidden_states = self.feed_forward(hidden_states)
534
+ hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
535
+ hidden_states = self.post_state_residual(residual, hidden_states)
536
+
537
+ outputs = (hidden_states,)
538
+
539
+ if output_attentions:
540
+ outputs += (self_attn_weights,)
541
+
542
+ if use_cache:
543
+ outputs += (present_key_value,)
544
+
545
+ return outputs
546
+
547
+
548
+ @add_start_docstrings("The bare Doge Model outputting raw hidden-states without any specific head on top.")
549
+ class DogePreTrainedModel(PreTrainedModel):
550
+ config_class = DogeConfig
551
+ base_model_prefix = "model"
552
+ supports_gradient_checkpointing = True
553
+ _no_split_modules = ["DogeDecoderLayer"]
554
+ _skip_keys_device_placement = ["past_key_values"]
555
+ _supports_sdpa = True
556
+ _supports_cache_class = True
557
+ _supports_quantized_cache = True
558
+ _supports_static_cache = True
559
+
560
+ def _init_weights(self, module):
561
+ std = self.config.initializer_range
562
+ if isinstance(module, (nn.Linear)):
563
+ module.weight.data.normal_(mean=0.0, std=std)
564
+ if module.bias is not None:
565
+ module.bias.data.zero_()
566
+ elif isinstance(module, nn.Embedding):
567
+ module.weight.data.normal_(mean=0.0, std=std)
568
+ if module.padding_idx is not None:
569
+ module.weight.data[module.padding_idx].zero_()
570
+
571
+
572
+ DOGE_INPUTS_DOCSTRING = r"""
573
+ Args:
574
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
575
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
576
+ it.
577
+
578
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
579
+ [`PreTrainedTokenizer.__call__`] for details.
580
+
581
+ [What are input IDs?](../glossary#input-ids)
582
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
583
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
584
+
585
+ - 1 for tokens that are **not masked**,
586
+ - 0 for tokens that are **masked**.
587
+
588
+ [What are attention masks?](../glossary#attention-mask)
589
+
590
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
591
+ [`PreTrainedTokenizer.__call__`] for details.
592
+
593
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
594
+ `past_key_values`).
595
+
596
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
597
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
598
+ information on the default strategy.
599
+
600
+ - 1 indicates the head is **not masked**,
601
+ - 0 indicates the head is **masked**.
602
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
603
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
604
+ config.n_positions - 1]`.
605
+
606
+ [What are position IDs?](../glossary#position-ids)
607
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
608
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
609
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
610
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
611
+
612
+ Two formats are allowed:
613
+ - a [`~cache_utils.Cache`] instance, see our
614
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
615
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
616
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
617
+ cache format.
618
+
619
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
620
+ legacy cache format will be returned.
621
+
622
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
623
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
624
+ of shape `(batch_size, sequence_length)`.
625
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
626
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
627
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
628
+ model's internal embedding lookup matrix.
629
+ use_cache (`bool`, *optional*):
630
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
631
+ `past_key_values`).
632
+ output_attentions (`bool`, *optional*):
633
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
634
+ tensors for more detail.
635
+ output_hidden_states (`bool`, *optional*):
636
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
637
+ more detail.
638
+ return_dict (`bool`, *optional*):
639
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
640
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
641
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
642
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
643
+ the complete sequence length.
644
+ """
645
+
646
+
647
+ @add_start_docstrings("The bare Doge Model outputting raw hidden-states without any specific head on top.")
648
+ class DogeModel(DogePreTrainedModel):
649
+ def __init__(self, config: DogeConfig):
650
+ super().__init__(config)
651
+ self.config = config
652
+ self.padding_idx = config.pad_token_id
653
+ self.vocab_size = config.vocab_size
654
+
655
+ self.word_embed = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
656
+ self.rotary_emb = RotaryEmbedding(config)
657
+ self.layers = nn.ModuleList(
658
+ [DogeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
659
+ )
660
+ self.final_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
661
+ self.gradient_checkpointing = False
662
+
663
+ # Initialize weights and apply final processing
664
+ self.post_init()
665
+
666
+ def get_input_embeddings(self):
667
+ return self.word_embed
668
+
669
+ def set_input_embeddings(self, value):
670
+ self.word_embed = value
671
+
672
+ @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
673
+ def forward(
674
+ self,
675
+ input_ids: torch.LongTensor = None,
676
+ attention_mask: Optional[torch.Tensor] = None,
677
+ position_ids: Optional[torch.LongTensor] = None,
678
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
679
+ inputs_embeds: Optional[torch.FloatTensor] = None,
680
+ use_cache: Optional[bool] = None,
681
+ output_attentions: Optional[bool] = None,
682
+ output_hidden_states: Optional[bool] = None,
683
+ return_dict: Optional[bool] = None,
684
+ cache_position: Optional[torch.LongTensor] = None,
685
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
686
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
687
+ output_hidden_states = (
688
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
689
+ )
690
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
691
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
692
+
693
+ if (input_ids is None) ^ (inputs_embeds is not None):
694
+ raise ValueError("You cannot specify both input_ids and inputs_embeds")
695
+
696
+ if self.gradient_checkpointing and self.training and use_cache:
697
+ logger.warning_once(
698
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
699
+ )
700
+ use_cache = False
701
+
702
+ if inputs_embeds is None:
703
+ inputs_embeds = self.word_embed(input_ids)
704
+
705
+ # kept for BC (non `Cache` `past_key_values` inputs)
706
+ return_legacy_cache = False
707
+ if use_cache and not isinstance(past_key_values, Cache):
708
+ return_legacy_cache = True
709
+ if past_key_values is None:
710
+ past_key_values = DynamicCache()
711
+ else:
712
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
713
+ logger.warning_once(
714
+ "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
715
+ "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
716
+ "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
717
+ )
718
+
719
+ if cache_position is None:
720
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
721
+ cache_position = torch.arange(
722
+ past_seen_tokens,
723
+ past_seen_tokens + inputs_embeds.shape[1],
724
+ device=inputs_embeds.device,
725
+ )
726
+ if position_ids is None:
727
+ position_ids = cache_position.unsqueeze(0)
728
+
729
+ causal_mask = self._update_causal_mask(
730
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
731
+ )
732
+ hidden_states = inputs_embeds
733
+
734
+ # create position embeddings to be shared across the decoder layers
735
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
736
+
737
+ # decoder layers
738
+ all_hidden_states = () if output_hidden_states else None
739
+ all_self_attns = () if output_attentions else None
740
+ next_decoder_cache = None
741
+
742
+ for decoder_layer in self.layers:
743
+ if output_hidden_states:
744
+ all_hidden_states += (hidden_states,)
745
+
746
+ if self.gradient_checkpointing and self.training:
747
+ layer_outputs = self._gradient_checkpointing_func(
748
+ decoder_layer.__call__,
749
+ hidden_states,
750
+ causal_mask,
751
+ position_ids,
752
+ past_key_values,
753
+ output_attentions,
754
+ use_cache,
755
+ cache_position,
756
+ position_embeddings,
757
+ )
758
+ else:
759
+ layer_outputs = decoder_layer(
760
+ hidden_states,
761
+ attention_mask=causal_mask,
762
+ position_ids=position_ids,
763
+ past_key_value=past_key_values,
764
+ output_attentions=output_attentions,
765
+ use_cache=use_cache,
766
+ cache_position=cache_position,
767
+ position_embeddings=position_embeddings,
768
+ )
769
+
770
+ hidden_states = layer_outputs[0]
771
+
772
+ if use_cache:
773
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
774
+
775
+ if output_attentions:
776
+ all_self_attns += (layer_outputs[1],)
777
+
778
+ hidden_states = self.final_layernorm(hidden_states)
779
+
780
+ # add hidden states from the last decoder layer
781
+ if output_hidden_states:
782
+ all_hidden_states += (hidden_states,)
783
+
784
+ next_cache = next_decoder_cache if use_cache else None
785
+ if return_legacy_cache:
786
+ next_cache = next_cache.to_legacy_cache()
787
+
788
+ if not return_dict:
789
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
790
+
791
+ return BaseModelOutputWithPast(
792
+ last_hidden_state=hidden_states,
793
+ past_key_values=next_cache,
794
+ hidden_states=all_hidden_states,
795
+ attentions=all_self_attns,
796
+ )
797
+
798
+ def _update_causal_mask(
799
+ self,
800
+ attention_mask: torch.Tensor = None,
801
+ input_tensor: torch.Tensor = None,
802
+ cache_position: torch.Tensor = None,
803
+ past_key_values: Cache = None,
804
+ output_attentions: bool = False,
805
+ ):
806
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
807
+ using_static_cache = isinstance(past_key_values, StaticCache)
808
+
809
+ dtype, device = input_tensor.dtype, input_tensor.device
810
+ sequence_length = input_tensor.shape[1]
811
+ if using_static_cache:
812
+ target_length = past_key_values.get_max_cache_shape()
813
+ else:
814
+ target_length = (
815
+ attention_mask.shape[-1]
816
+ if isinstance(attention_mask, torch.Tensor)
817
+ else past_seen_tokens + sequence_length + 1
818
+ )
819
+
820
+ # in case the provided `attention` mask is 2D, we generate a causal mask here (4D).
821
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
822
+ attention_mask=attention_mask,
823
+ sequence_length=sequence_length,
824
+ target_length=target_length,
825
+ dtype=dtype,
826
+ device=device,
827
+ cache_position=cache_position,
828
+ batch_size=input_tensor.shape[0],
829
+ )
830
+
831
+ return causal_mask
832
+
833
+ @staticmethod
834
+ def _prepare_4d_causal_attention_mask_with_cache_position(
835
+ attention_mask: torch.Tensor = None,
836
+ sequence_length: int = None,
837
+ target_length: int = None,
838
+ dtype: torch.dtype = None,
839
+ device: torch.device = None,
840
+ cache_position: torch.Tensor = None,
841
+ batch_size: int = None,
842
+ **kwargs,
843
+ ):
844
+ """
845
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
846
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
847
+
848
+ Args:
849
+ attention_mask (`torch.Tensor`):
850
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
851
+ `(batch_size, 1, query_length, key_value_length)`.
852
+ sequence_length (`int`):
853
+ The sequence length being processed.
854
+ target_length (`int`):
855
+ The target length: when generating with static cache, the mask should be as long as the static cache,
856
+ to account for the 0 padding, the part of the cache that is not filled yet.
857
+ dtype (`torch.dtype`):
858
+ The dtype to use for the 4D attention mask.
859
+ device (`torch.device`):
860
+ The device to plcae the 4D attention mask on.
861
+ cache_position (`torch.Tensor`):
862
+ Indices depicting the position of the input sequence tokens in the sequence.
863
+ batch_size (`torch.Tensor`):
864
+ Batch size.
865
+ """
866
+ if attention_mask is not None and attention_mask.dim() == 4:
867
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
868
+ causal_mask = attention_mask
869
+ else:
870
+ min_dtype = torch.finfo(dtype).min
871
+ causal_mask = torch.full(
872
+ (sequence_length, target_length),
873
+ fill_value=min_dtype, dtype=dtype, device=device,
874
+ )
875
+ if sequence_length != 1:
876
+ causal_mask = torch.triu(causal_mask, diagonal=1)
877
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
878
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
879
+ if attention_mask is not None:
880
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
881
+ mask_length = attention_mask.shape[-1]
882
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
883
+ padding_mask = padding_mask == 0
884
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
885
+ padding_mask, min_dtype
886
+ )
887
+
888
+ return causal_mask
889
+
890
+
891
+ class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
892
+ _tied_weights_keys = ["lm_head.weight"]
893
+
894
+ def __init__(self, config: DogeConfig):
895
+ super().__init__(config)
896
+ self.config = config
897
+ self.model = DogeModel(config)
898
+ self.vocab_size = config.vocab_size
899
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
900
+
901
+ # Initialize weights and apply final processing
902
+ self.post_init()
903
+
904
+ def get_input_embeddings(self):
905
+ return self.model.word_embed
906
+
907
+ def set_input_embeddings(self, value):
908
+ self.model.word_embed = value
909
+
910
+ def get_output_embeddings(self):
911
+ return self.lm_head
912
+
913
+ def set_output_embeddings(self, new_embeddings):
914
+ self.lm_head = new_embeddings
915
+
916
+ def set_decoder(self, decoder):
917
+ self.model = decoder
918
+
919
+ def get_decoder(self):
920
+ return self.model
921
+
922
+ @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
923
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
924
+ def forward(
925
+ self,
926
+ input_ids: torch.LongTensor = None,
927
+ attention_mask: Optional[torch.Tensor] = None,
928
+ position_ids: Optional[torch.LongTensor] = None,
929
+ past_key_values: Optional[torch.Tensor] = None,
930
+ inputs_embeds: Optional[torch.FloatTensor] = None,
931
+ labels: Optional[torch.LongTensor] = None,
932
+ use_cache: Optional[bool] = None,
933
+ output_attentions: Optional[bool] = None,
934
+ output_hidden_states: Optional[bool] = None,
935
+ return_dict: Optional[bool] = None,
936
+ cache_position: Optional[torch.LongTensor] = None,
937
+ num_logits_to_keep: int = 0,
938
+ **loss_kwargs,
939
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
940
+ r"""
941
+ Args:
942
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
943
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
944
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
945
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
946
+
947
+ num_logits_to_keep (`int`, *optional*):
948
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
949
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
950
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
951
+
952
+ Returns:
953
+ """
954
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
955
+ output_hidden_states = (
956
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
957
+ )
958
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
959
+
960
+ # decoder output consists of (dec_features, layer_state, dec_hidden, dec_attn)
961
+ outputs = self.model(
962
+ input_ids=input_ids,
963
+ attention_mask=attention_mask,
964
+ position_ids=position_ids,
965
+ past_key_values=past_key_values,
966
+ inputs_embeds=inputs_embeds,
967
+ use_cache=use_cache,
968
+ output_attentions=output_attentions,
969
+ output_hidden_states=output_hidden_states,
970
+ return_dict=return_dict,
971
+ cache_position=cache_position,
972
+ )
973
+
974
+ hidden_states = outputs[0]
975
+
976
+ # only compute necessary logits, and do not upcast them to float if we are not computing the loss
977
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
978
+
979
+ loss = None
980
+ if labels is not None:
981
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size, **loss_kwargs)
982
+
983
+ if not return_dict:
984
+ output = (logits,) + outputs[1:]
985
+ return (loss,) + output if loss is not None else output
986
+
987
+ return CausalLMOutputWithPast(
988
+ loss=loss,
989
+ logits=logits,
990
+ past_key_values=outputs.past_key_values,
991
+ hidden_states=outputs.hidden_states,
992
+ attentions=outputs.attentions,
993
+ )
994
+
995
+
996
+ @add_start_docstrings(
997
+ """
998
+ The Doge Model transformer with a sequence classification head on top (linear layer).
999
+
1000
+ [`DogeForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1001
+ (e.g. GPT-2) do.
1002
+
1003
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1004
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1005
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1006
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1007
+ each row of the batch).
1008
+ """
1009
+ )
1010
+ class DogeForSequenceClassification(DogePreTrainedModel):
1011
+ def __init__(self, config: DogeConfig):
1012
+ super().__init__(config)
1013
+ self.config = config
1014
+ self.num_labels = config.num_labels
1015
+
1016
+ self.model = DogeModel(config)
1017
+ self.classifier = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1018
+
1019
+ # Initialize weights and apply final processing
1020
+ self.init_weights()
1021
+
1022
+ def get_input_embeddings(self):
1023
+ return self.model.word_embed
1024
+
1025
+ def set_input_embeddings(self, value):
1026
+ self.model.word_embed = value
1027
+
1028
+ @add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
1029
+ def forward(
1030
+ self,
1031
+ input_ids: Optional[torch.LongTensor] = None,
1032
+ attention_mask: Optional[torch.Tensor] = None,
1033
+ position_ids: Optional[torch.LongTensor] = None,
1034
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1035
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1036
+ labels: Optional[torch.LongTensor] = None,
1037
+ use_cache: Optional[bool] = None,
1038
+ output_attentions: Optional[bool] = None,
1039
+ output_hidden_states: Optional[bool] = None,
1040
+ return_dict: Optional[bool] = None,
1041
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1042
+ r"""
1043
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1044
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1045
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1046
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1047
+ """
1048
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1049
+
1050
+ outputs = self.model(
1051
+ input_ids=input_ids,
1052
+ attention_mask=attention_mask,
1053
+ position_ids=position_ids,
1054
+ past_key_values=past_key_values,
1055
+ inputs_embeds=inputs_embeds,
1056
+ use_cache=use_cache,
1057
+ output_attentions=output_attentions,
1058
+ output_hidden_states=output_hidden_states,
1059
+ return_dict=return_dict,
1060
+ )
1061
+ hidden_states = outputs[0]
1062
+ logits = self.classifier(hidden_states)
1063
+
1064
+ if input_ids is not None:
1065
+ batch_size = input_ids.shape[0]
1066
+ else:
1067
+ batch_size = inputs_embeds.shape[0]
1068
+
1069
+ if self.config.pad_token_id is None and batch_size != 1:
1070
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1071
+ if self.config.pad_token_id is None:
1072
+ sequence_lengths = -1
1073
+ else:
1074
+ if input_ids is not None:
1075
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1076
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1077
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1078
+ sequence_lengths = sequence_lengths.to(logits.device)
1079
+ else:
1080
+ sequence_lengths = -1
1081
+
1082
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1083
+
1084
+ loss = None
1085
+ if labels is not None:
1086
+ loss = self.loss_function(
1087
+ logits=logits,
1088
+ labels=labels,
1089
+ pooled_logits=pooled_logits,
1090
+ config=self.config,
1091
+ )
1092
+
1093
+ if not return_dict:
1094
+ output = (pooled_logits,) + outputs[1:]
1095
+ return ((loss,) + output) if loss is not None else output
1096
+
1097
+ return SequenceClassifierOutputWithPast(
1098
+ loss=loss,
1099
+ logits=pooled_logits,
1100
+ past_key_values=outputs.past_key_values,
1101
+ hidden_states=outputs.hidden_states,
1102
+ attentions=outputs.attentions,
1103
+ )