File size: 3,021 Bytes
241d607 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
library_name: transformers
license: mit
base_model: facebook/bart-large-cnn
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: pegasus_xsum_samsum_model_10epoch
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pegasus_xsum_samsum_model_10epoch
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5260
- Model Preparation Time: 0.0066
- Rouge1: 0.4165
- Rouge2: 0.1911
- Rougel: 0.3142
- Rougelsum: 0.3143
- Gen Len: 60.615
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 200 | 1.4282 | 0.0066 | 0.4109 | 0.2008 | 0.3084 | 0.3085 | 59.755 |
| No log | 2.0 | 400 | 1.5080 | 0.0066 | 0.4214 | 0.2027 | 0.3175 | 0.3175 | 59.3862 |
| 1.2171 | 3.0 | 600 | 1.5348 | 0.0066 | 0.4093 | 0.1949 | 0.3071 | 0.307 | 60.2062 |
| 1.2171 | 4.0 | 800 | 1.7114 | 0.0066 | 0.4092 | 0.1928 | 0.3067 | 0.3066 | 60.38 |
| 0.6518 | 5.0 | 1000 | 1.8757 | 0.0066 | 0.4149 | 0.1935 | 0.3118 | 0.3117 | 59.5 |
| 0.6518 | 6.0 | 1200 | 2.0521 | 0.0066 | 0.4126 | 0.1902 | 0.3107 | 0.3108 | 60.335 |
| 0.6518 | 7.0 | 1400 | 2.1551 | 0.0066 | 0.4138 | 0.1917 | 0.3117 | 0.3115 | 60.1888 |
| 0.3371 | 8.0 | 1600 | 2.4051 | 0.0066 | 0.4132 | 0.1913 | 0.3116 | 0.3116 | 60.28 |
| 0.3371 | 9.0 | 1800 | 2.4850 | 0.0066 | 0.4146 | 0.1897 | 0.3129 | 0.3131 | 60.7375 |
| 0.2072 | 10.0 | 2000 | 2.5260 | 0.0066 | 0.4165 | 0.1911 | 0.3142 | 0.3143 | 60.615 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|