--- library_name: transformers license: mit base_model: facebook/bart-large-cnn tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: bart_large_cnn_samsum_model_10epoch results: [] --- # bart_large_cnn_samsum_model_10epoch This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5260 - Model Preparation Time: 0.0066 - Rouge1: 0.4165 - Rouge2: 0.1911 - Rougel: 0.3142 - Rougelsum: 0.3143 - Gen Len: 60.615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 200 | 1.4282 | 0.0066 | 0.4109 | 0.2008 | 0.3084 | 0.3085 | 59.755 | | No log | 2.0 | 400 | 1.5080 | 0.0066 | 0.4214 | 0.2027 | 0.3175 | 0.3175 | 59.3862 | | 1.2171 | 3.0 | 600 | 1.5348 | 0.0066 | 0.4093 | 0.1949 | 0.3071 | 0.307 | 60.2062 | | 1.2171 | 4.0 | 800 | 1.7114 | 0.0066 | 0.4092 | 0.1928 | 0.3067 | 0.3066 | 60.38 | | 0.6518 | 5.0 | 1000 | 1.8757 | 0.0066 | 0.4149 | 0.1935 | 0.3118 | 0.3117 | 59.5 | | 0.6518 | 6.0 | 1200 | 2.0521 | 0.0066 | 0.4126 | 0.1902 | 0.3107 | 0.3108 | 60.335 | | 0.6518 | 7.0 | 1400 | 2.1551 | 0.0066 | 0.4138 | 0.1917 | 0.3117 | 0.3115 | 60.1888 | | 0.3371 | 8.0 | 1600 | 2.4051 | 0.0066 | 0.4132 | 0.1913 | 0.3116 | 0.3116 | 60.28 | | 0.3371 | 9.0 | 1800 | 2.4850 | 0.0066 | 0.4146 | 0.1897 | 0.3129 | 0.3131 | 60.7375 | | 0.2072 | 10.0 | 2000 | 2.5260 | 0.0066 | 0.4165 | 0.1911 | 0.3142 | 0.3143 | 60.615 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3