John6666's picture
Upload 3 files
c566e3a verified
#!/usr/bin/env python3
"""
Use JoyCaption to caption images.
"""
import argparse
import dataclasses
import json
import logging
import os
import random
from pathlib import Path
import PIL.Image
import torch
import torch.amp
import torchvision.transforms.functional as TVF
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from transformers import (
AutoTokenizer,
LlavaForConditionalGeneration,
PreTrainedTokenizer,
PreTrainedTokenizerFast,
)
from typing import Union
def none_or_type(value, desired_type):
if value == "None":
return None
return desired_type(value)
DEFAULT_PROMPT = "Write a descriptive caption for this image in a formal tone."
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input', type=str, help='Input image')
parser.add_argument("--glob", type=str, help="Glob pattern to find images")
parser.add_argument("--filelist", type=str, help="File containing list of images")
parser.add_argument("--prompt", type=str, help="Prompt to use")
parser.add_argument("--prompt-file", type=str, help="JSON file containing prompts to use")
parser.add_argument("--batch-size", type=int, default=1, help="Batch size")
parser.add_argument("--greedy", action="store_true", help="Use greedy decoding instead of sampling")
parser.add_argument("--temperature", type=float, default=0.6, help="Sampling temperature")
parser.add_argument("--top-p", type=lambda x: none_or_type(x, float), default=0.9, help="Top-p sampling")
parser.add_argument("--top-k", type=lambda x: none_or_type(x, int), default=None, help="Top-k sampling")
parser.add_argument("--max-new-tokens", type=int, default=256, help="Maximum length of the generated caption (in tokens)")
parser.add_argument("--num-workers", type=int, default=4, help="Number of workers loading images in parallel")
parser.add_argument("--model", type=str, default="fancyfeast/llama-joycaption-alpha-two-hf-llava", help="Model to use")
#parser.add_argument("--model", type=str, default="John6666/llama-joycaption-alpha-two-hf-llava-nf4", help="Model to use")
parser.add_argument("--nf4", action="store_true", default=False, help="Use NF4 (default: bfloat16)")
PIL.Image.MAX_IMAGE_PIXELS = 933120000 # Quiets Pillow from giving warnings on really large images (WARNING: Exposes a risk of DoS from malicious images)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
@dataclasses.dataclass
class Prompt:
prompt: str
weight: float
#@torch.no_grad()
@torch.inference_mode()
def main():
# Logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s: %(message)s")
# Parse arguments
args = parser.parse_args()
logging.info(f"Arguments: {args}")
IS_NF4 = args.nf4
# Make sure we have a prompt or a prompt file
prompts = parse_prompts(args.prompt, args.prompt_file)
# Find the images
image_paths = find_images(args.glob, args.filelist, args.input)
if len(image_paths) == 0:
logging.warning("No images found")
return
logging.info(f"Found {len(image_paths)} images")
# Ignore all images that already have captions
image_paths = [path for path in image_paths if not Path(path).with_suffix(".txt").exists()]
# Load JoyCaption
from transformers import BitsAndBytesConfig
nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_quant_storage=torch.bfloat16,
bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(args.model, use_fast=True)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
if IS_NF4: llava_model = LlavaForConditionalGeneration.from_pretrained(args.model, quantization_config=nf4_config, torch_dtype="bfloat16", device_map=device)
else: llava_model = LlavaForConditionalGeneration.from_pretrained(args.model, torch_dtype="bfloat16", device_map=device)
assert isinstance(llava_model, LlavaForConditionalGeneration)
dataset = ImageDataset(prompts, image_paths, tokenizer, llava_model.config.image_token_index, llava_model.config.image_seq_length)
dataloader = DataLoader(dataset, collate_fn=dataset.collate_fn, num_workers=args.num_workers, shuffle=False, drop_last=False, batch_size=args.batch_size)
end_of_header_id = tokenizer.convert_tokens_to_ids("<|end_header_id|>")
end_of_turn_id = tokenizer.convert_tokens_to_ids("<|eot_id|>")
assert isinstance(end_of_header_id, int) and isinstance(end_of_turn_id, int)
pbar = tqdm(total=len(image_paths), desc="Captioning images...", dynamic_ncols=True)
for batch in dataloader:
vision_dtype = llava_model.vision_tower.vision_model.embeddings.patch_embedding.weight.dtype
vision_device = llava_model.vision_tower.vision_model.embeddings.patch_embedding.weight.device
language_device = llava_model.language_model.get_input_embeddings().weight.device
# Move to GPU
pixel_values = batch['pixel_values'].to(vision_device, non_blocking=True)
input_ids = batch['input_ids'].to(language_device, non_blocking=True)
attention_mask = batch['attention_mask'].to(language_device, non_blocking=True)
# Normalize the image
pixel_values = pixel_values / 255.0
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
pixel_values = pixel_values.to(vision_dtype)
# Generate the captions
generate_ids = llava_model.generate(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
max_new_tokens=args.max_new_tokens,
do_sample=not args.greedy,
suppress_tokens=None,
use_cache=True,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
)
# Trim off the prompts
assert isinstance(generate_ids, torch.Tensor)
generate_ids = generate_ids.tolist()
generate_ids = [trim_off_prompt(ids, end_of_header_id, end_of_turn_id) for ids in generate_ids]
# Decode the captions
captions = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)
captions = [c.strip() for c in captions]
for path, caption in zip(batch['paths'], captions):
write_caption(Path(path), caption)
pbar.update(len(captions))
def trim_off_prompt(input_ids: list[int], eoh_id: int, eot_id: int) -> list[int]:
# Trim off the prompt
while True:
try:
i = input_ids.index(eoh_id)
except ValueError:
break
input_ids = input_ids[i + 1:]
# Trim off the end
try:
i = input_ids.index(eot_id)
except ValueError:
return input_ids
return input_ids[:i]
def write_caption(image_path: Path, caption: str):
caption_path = image_path.with_suffix(".txt")
try:
f = os.open(caption_path, os.O_WRONLY | os.O_CREAT | os.O_EXCL) # Write-only, create if not exist, fail if exists
except FileExistsError:
logging.warning(f"Caption file '{caption_path}' already exists")
return
except Exception as e:
logging.error(f"Failed to open caption file '{caption_path}': {e}")
return
try:
os.write(f, caption.encode("utf-8"))
os.close(f)
except Exception as e:
logging.error(f"Failed to write caption to '{caption_path}': {e}")
return
class ImageDataset(Dataset):
def __init__(self, prompts: list[Prompt], paths: list[Path], tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast], image_token_id: int, image_seq_length: int):
self.prompts = prompts
self.paths = paths
self.tokenizer = tokenizer
self.image_token_id = image_token_id
self.image_seq_length = image_seq_length
self.pad_token_id = tokenizer.pad_token_id
def __len__(self):
return len(self.paths)
def __getitem__(self, idx: int) -> dict:
path = self.paths[idx]
# Pick a prompt
prompt_str = random.choices(self.prompts, weights=[p.weight for p in self.prompts])[0].prompt
# Preprocess image
# NOTE: I don't use the Processor here and instead do it manually.
# This is because in my testing a simple resize in Pillow yields higher quality results than the Processor,
# and the Processor had some buggy behavior on some images.
# And yes, with the so400m model, the model expects the image to be squished into a square, not padded.
try:
image = Image.open(path)
if image.size != (384, 384):
image = image.resize((384, 384), Image.LANCZOS)
image = image.convert("RGB")
pixel_values = TVF.pil_to_tensor(image)
except Exception as e:
logging.error(f"Failed to load image '{path}': {e}")
pixel_values = None # Will be filtered out later
# Build the conversation
convo = [
{
"role": "system",
"content": "You are a helpful image captioner.",
},
{
"role": "user",
"content": prompt_str,
},
]
# Format the conversation
convo_string = self.tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True)
assert isinstance(convo_string, str)
# Tokenize the conversation
convo_tokens = self.tokenizer.encode(convo_string, add_special_tokens=False, truncation=False)
# Repeat the image tokens
input_tokens = []
for token in convo_tokens:
if token == self.image_token_id:
input_tokens.extend([self.image_token_id] * self.image_seq_length)
else:
input_tokens.append(token)
input_ids = torch.tensor(input_tokens, dtype=torch.long)
attention_mask = torch.ones_like(input_ids)
return {
'path': path,
'pixel_values': pixel_values,
'input_ids': input_ids,
'attention_mask': attention_mask,
}
def collate_fn(self, batch: list[dict]) -> dict:
# Filter out images that failed to load
batch = [item for item in batch if item['pixel_values'] is not None]
# Pad input_ids and attention_mask
# Have to use left padding because HF's generate can't handle right padding it seems
max_length = max(item['input_ids'].shape[0] for item in batch)
n_pad = [max_length - item['input_ids'].shape[0] for item in batch]
input_ids = torch.stack([torch.nn.functional.pad(item['input_ids'], (n, 0), value=self.pad_token_id) for item, n in zip(batch, n_pad)])
attention_mask = torch.stack([torch.nn.functional.pad(item['attention_mask'], (n, 0), value=0) for item, n in zip(batch, n_pad)])
# Stack pixel values
pixel_values = torch.stack([item['pixel_values'] for item in batch])
# Paths
paths = [item['path'] for item in batch]
return {
'paths': paths,
'pixel_values': pixel_values,
'input_ids': input_ids,
'attention_mask': attention_mask,
}
def parse_prompts(prompt_str: Union[str, None], prompt_file: Union[str, None]) -> list[Prompt]:
if prompt_str is not None and prompt_file is not None:
raise ValueError("Cannot specify both --prompt and --prompt-file")
if prompt_str is not None:
return [Prompt(prompt=prompt_str, weight=1.0)]
if prompt_file is None:
return [Prompt(prompt=DEFAULT_PROMPT, weight=1.0)]
#raise ValueError("Must specify either --prompt or --prompt-file")
data = json.loads(Path(prompt_file).read_text())
if not isinstance(data, list):
raise ValueError("Expected JSON file to contain a list of prompts")
prompts = []
for item in data:
if isinstance(item, str):
prompts.append(Prompt(prompt=item, weight=1.0))
elif isinstance(item, dict) and "prompt" in item and "weight" in item and isinstance(item["prompt"], str) and isinstance(item["weight"], (int, float)):
prompts.append(Prompt(prompt=item["prompt"], weight=item["weight"]))
else:
raise ValueError(f"Invalid prompt in JSON file. Should be either a string or an object with 'prompt' and 'weight' fields: {item}")
if len(prompts) == 0:
raise ValueError("No prompts found in JSON file")
if sum(p.weight for p in prompts) <= 0.0:
raise ValueError("Prompt weights must sum to a positive number")
return prompts
def find_images(glob: Union[str, None], filelist: Union[str, Path, None], input: str) -> list[Path]:
if glob is None and filelist is None and input is None:
raise ValueError("Must specify either --glob or --filelist or --input")
paths = []
if glob is not None:
paths.extend(Path(".").glob(glob))
if filelist is not None:
paths.extend((Path(line.strip()) for line in Path(filelist).read_text().strip().splitlines() if line.strip() != ""))
if input is not None:
paths.append(input)
return paths
if __name__ == "__main__":
main()
# https://github.com/huggingface/peft/issues/156
# https://github.com/bitsandbytes-foundation/bitsandbytes/issues/1331
# https://github.com/huggingface/peft/issues/1831