#!/usr/bin/env python3 """ Use JoyCaption to caption images. """ import argparse import dataclasses import json import logging import os import random from pathlib import Path import PIL.Image import torch import torch.amp import torchvision.transforms.functional as TVF from PIL import Image from torch.utils.data import DataLoader, Dataset from tqdm import tqdm from transformers import ( AutoTokenizer, LlavaForConditionalGeneration, PreTrainedTokenizer, PreTrainedTokenizerFast, ) from typing import Union def none_or_type(value, desired_type): if value == "None": return None return desired_type(value) DEFAULT_PROMPT = "Write a descriptive caption for this image in a formal tone." parser = argparse.ArgumentParser() parser.add_argument('-i', '--input', type=str, help='Input image') parser.add_argument("--glob", type=str, help="Glob pattern to find images") parser.add_argument("--filelist", type=str, help="File containing list of images") parser.add_argument("--prompt", type=str, help="Prompt to use") parser.add_argument("--prompt-file", type=str, help="JSON file containing prompts to use") parser.add_argument("--batch-size", type=int, default=1, help="Batch size") parser.add_argument("--greedy", action="store_true", help="Use greedy decoding instead of sampling") parser.add_argument("--temperature", type=float, default=0.6, help="Sampling temperature") parser.add_argument("--top-p", type=lambda x: none_or_type(x, float), default=0.9, help="Top-p sampling") parser.add_argument("--top-k", type=lambda x: none_or_type(x, int), default=None, help="Top-k sampling") parser.add_argument("--max-new-tokens", type=int, default=256, help="Maximum length of the generated caption (in tokens)") parser.add_argument("--num-workers", type=int, default=4, help="Number of workers loading images in parallel") parser.add_argument("--model", type=str, default="fancyfeast/llama-joycaption-alpha-two-hf-llava", help="Model to use") #parser.add_argument("--model", type=str, default="John6666/llama-joycaption-alpha-two-hf-llava-nf4", help="Model to use") parser.add_argument("--nf4", action="store_true", default=False, help="Use NF4 (default: bfloat16)") PIL.Image.MAX_IMAGE_PIXELS = 933120000 # Quiets Pillow from giving warnings on really large images (WARNING: Exposes a risk of DoS from malicious images) device = "cuda:0" if torch.cuda.is_available() else "cpu" @dataclasses.dataclass class Prompt: prompt: str weight: float #@torch.no_grad() @torch.inference_mode() def main(): # Logging logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s: %(message)s") # Parse arguments args = parser.parse_args() logging.info(f"Arguments: {args}") IS_NF4 = args.nf4 # Make sure we have a prompt or a prompt file prompts = parse_prompts(args.prompt, args.prompt_file) # Find the images image_paths = find_images(args.glob, args.filelist, args.input) if len(image_paths) == 0: logging.warning("No images found") return logging.info(f"Found {len(image_paths)} images") # Ignore all images that already have captions image_paths = [path for path in image_paths if not Path(path).with_suffix(".txt").exists()] # Load JoyCaption from transformers import BitsAndBytesConfig nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_quant_storage=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(args.model, use_fast=True) assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}" if IS_NF4: llava_model = LlavaForConditionalGeneration.from_pretrained(args.model, quantization_config=nf4_config, torch_dtype="bfloat16", device_map=device) else: llava_model = LlavaForConditionalGeneration.from_pretrained(args.model, torch_dtype="bfloat16", device_map=device) assert isinstance(llava_model, LlavaForConditionalGeneration) dataset = ImageDataset(prompts, image_paths, tokenizer, llava_model.config.image_token_index, llava_model.config.image_seq_length) dataloader = DataLoader(dataset, collate_fn=dataset.collate_fn, num_workers=args.num_workers, shuffle=False, drop_last=False, batch_size=args.batch_size) end_of_header_id = tokenizer.convert_tokens_to_ids("<|end_header_id|>") end_of_turn_id = tokenizer.convert_tokens_to_ids("<|eot_id|>") assert isinstance(end_of_header_id, int) and isinstance(end_of_turn_id, int) pbar = tqdm(total=len(image_paths), desc="Captioning images...", dynamic_ncols=True) for batch in dataloader: vision_dtype = llava_model.vision_tower.vision_model.embeddings.patch_embedding.weight.dtype vision_device = llava_model.vision_tower.vision_model.embeddings.patch_embedding.weight.device language_device = llava_model.language_model.get_input_embeddings().weight.device # Move to GPU pixel_values = batch['pixel_values'].to(vision_device, non_blocking=True) input_ids = batch['input_ids'].to(language_device, non_blocking=True) attention_mask = batch['attention_mask'].to(language_device, non_blocking=True) # Normalize the image pixel_values = pixel_values / 255.0 pixel_values = TVF.normalize(pixel_values, [0.5], [0.5]) pixel_values = pixel_values.to(vision_dtype) # Generate the captions generate_ids = llava_model.generate( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, max_new_tokens=args.max_new_tokens, do_sample=not args.greedy, suppress_tokens=None, use_cache=True, temperature=args.temperature, top_k=args.top_k, top_p=args.top_p, ) # Trim off the prompts assert isinstance(generate_ids, torch.Tensor) generate_ids = generate_ids.tolist() generate_ids = [trim_off_prompt(ids, end_of_header_id, end_of_turn_id) for ids in generate_ids] # Decode the captions captions = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False) captions = [c.strip() for c in captions] for path, caption in zip(batch['paths'], captions): write_caption(Path(path), caption) pbar.update(len(captions)) def trim_off_prompt(input_ids: list[int], eoh_id: int, eot_id: int) -> list[int]: # Trim off the prompt while True: try: i = input_ids.index(eoh_id) except ValueError: break input_ids = input_ids[i + 1:] # Trim off the end try: i = input_ids.index(eot_id) except ValueError: return input_ids return input_ids[:i] def write_caption(image_path: Path, caption: str): caption_path = image_path.with_suffix(".txt") try: f = os.open(caption_path, os.O_WRONLY | os.O_CREAT | os.O_EXCL) # Write-only, create if not exist, fail if exists except FileExistsError: logging.warning(f"Caption file '{caption_path}' already exists") return except Exception as e: logging.error(f"Failed to open caption file '{caption_path}': {e}") return try: os.write(f, caption.encode("utf-8")) os.close(f) except Exception as e: logging.error(f"Failed to write caption to '{caption_path}': {e}") return class ImageDataset(Dataset): def __init__(self, prompts: list[Prompt], paths: list[Path], tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast], image_token_id: int, image_seq_length: int): self.prompts = prompts self.paths = paths self.tokenizer = tokenizer self.image_token_id = image_token_id self.image_seq_length = image_seq_length self.pad_token_id = tokenizer.pad_token_id def __len__(self): return len(self.paths) def __getitem__(self, idx: int) -> dict: path = self.paths[idx] # Pick a prompt prompt_str = random.choices(self.prompts, weights=[p.weight for p in self.prompts])[0].prompt # Preprocess image # NOTE: I don't use the Processor here and instead do it manually. # This is because in my testing a simple resize in Pillow yields higher quality results than the Processor, # and the Processor had some buggy behavior on some images. # And yes, with the so400m model, the model expects the image to be squished into a square, not padded. try: image = Image.open(path) if image.size != (384, 384): image = image.resize((384, 384), Image.LANCZOS) image = image.convert("RGB") pixel_values = TVF.pil_to_tensor(image) except Exception as e: logging.error(f"Failed to load image '{path}': {e}") pixel_values = None # Will be filtered out later # Build the conversation convo = [ { "role": "system", "content": "You are a helpful image captioner.", }, { "role": "user", "content": prompt_str, }, ] # Format the conversation convo_string = self.tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True) assert isinstance(convo_string, str) # Tokenize the conversation convo_tokens = self.tokenizer.encode(convo_string, add_special_tokens=False, truncation=False) # Repeat the image tokens input_tokens = [] for token in convo_tokens: if token == self.image_token_id: input_tokens.extend([self.image_token_id] * self.image_seq_length) else: input_tokens.append(token) input_ids = torch.tensor(input_tokens, dtype=torch.long) attention_mask = torch.ones_like(input_ids) return { 'path': path, 'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask, } def collate_fn(self, batch: list[dict]) -> dict: # Filter out images that failed to load batch = [item for item in batch if item['pixel_values'] is not None] # Pad input_ids and attention_mask # Have to use left padding because HF's generate can't handle right padding it seems max_length = max(item['input_ids'].shape[0] for item in batch) n_pad = [max_length - item['input_ids'].shape[0] for item in batch] input_ids = torch.stack([torch.nn.functional.pad(item['input_ids'], (n, 0), value=self.pad_token_id) for item, n in zip(batch, n_pad)]) attention_mask = torch.stack([torch.nn.functional.pad(item['attention_mask'], (n, 0), value=0) for item, n in zip(batch, n_pad)]) # Stack pixel values pixel_values = torch.stack([item['pixel_values'] for item in batch]) # Paths paths = [item['path'] for item in batch] return { 'paths': paths, 'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask, } def parse_prompts(prompt_str: Union[str, None], prompt_file: Union[str, None]) -> list[Prompt]: if prompt_str is not None and prompt_file is not None: raise ValueError("Cannot specify both --prompt and --prompt-file") if prompt_str is not None: return [Prompt(prompt=prompt_str, weight=1.0)] if prompt_file is None: return [Prompt(prompt=DEFAULT_PROMPT, weight=1.0)] #raise ValueError("Must specify either --prompt or --prompt-file") data = json.loads(Path(prompt_file).read_text()) if not isinstance(data, list): raise ValueError("Expected JSON file to contain a list of prompts") prompts = [] for item in data: if isinstance(item, str): prompts.append(Prompt(prompt=item, weight=1.0)) elif isinstance(item, dict) and "prompt" in item and "weight" in item and isinstance(item["prompt"], str) and isinstance(item["weight"], (int, float)): prompts.append(Prompt(prompt=item["prompt"], weight=item["weight"])) else: raise ValueError(f"Invalid prompt in JSON file. Should be either a string or an object with 'prompt' and 'weight' fields: {item}") if len(prompts) == 0: raise ValueError("No prompts found in JSON file") if sum(p.weight for p in prompts) <= 0.0: raise ValueError("Prompt weights must sum to a positive number") return prompts def find_images(glob: Union[str, None], filelist: Union[str, Path, None], input: str) -> list[Path]: if glob is None and filelist is None and input is None: raise ValueError("Must specify either --glob or --filelist or --input") paths = [] if glob is not None: paths.extend(Path(".").glob(glob)) if filelist is not None: paths.extend((Path(line.strip()) for line in Path(filelist).read_text().strip().splitlines() if line.strip() != "")) if input is not None: paths.append(input) return paths if __name__ == "__main__": main() # https://github.com/huggingface/peft/issues/156 # https://github.com/bitsandbytes-foundation/bitsandbytes/issues/1331 # https://github.com/huggingface/peft/issues/1831