File size: 1,495 Bytes
b365d1b
a2ee67b
 
 
b365d1b
 
 
 
 
 
a2ee67b
b365d1b
a2ee67b
b365d1b
a2ee67b
 
b365d1b
a2ee67b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from transformers import Pipeline, AutoModelForTokenClassification, AutoTokenizer, pipeline

class AnonymizationPipeline(Pipeline):
    def __init__(self, model=None, tokenizer=None, **kwargs):
        self.model_name = "JonathanEGP/Beto_Ner"
        
        if model is None:
            model = AutoModelForTokenClassification.from_pretrained(self.model_name)
        if tokenizer is None:
            tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        
        super().__init__(model=model, tokenizer=tokenizer, **kwargs)
        
        self.ner_pipeline = pipeline("ner", model=self.model, tokenizer=self.tokenizer)

    def _sanitize_parameters(self, **kwargs):
        return {}, {}, {}

    def preprocess(self, text):
        return {"text": text}

    def _forward(self, model_inputs):
        text = model_inputs["text"]
        entities = self.ner_pipeline(text)
        return {"text": text, "entities": entities}

    def postprocess(self, model_outputs):
        text = model_outputs["text"]
        entities = model_outputs["entities"]
        
        entities.sort(key=lambda x: x['end'], reverse=True)
        
        for entity in entities:
            start = entity['start']
            end = entity['end']
            entity_type = entity['entity']
            text = text[:start] + f"[{entity_type}]" + text[end:]
        
        return {"anonymized_text": text}

    def __call__(self, text, **kwargs):
        return super().__call__(text, **kwargs)