--- license: apache-2.0 base_model: JoseVilla/cfe-telmex-classification-finetuned-v2 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: cfe-telmex-classification-finetuned-v3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9583333333333334 --- # cfe-telmex-classification-finetuned-v3 This model is a fine-tuned version of [JoseVilla/cfe-telmex-classification-finetuned-v2](https://huggingface.co/JoseVilla/cfe-telmex-classification-finetuned-v2) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2047 - Accuracy: 0.9583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.94 | 8 | 0.4386 | 0.8167 | | 0.6716 | 2.0 | 17 | 0.2047 | 0.9583 | | 0.1864 | 2.82 | 24 | 0.1664 | 0.9583 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3