|
from safetensors.torch import load_file |
|
import sys |
|
import torch |
|
from pathlib import Path |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
def cal_cross_attn(to_q, to_k, to_v, rand_input): |
|
hidden_dim, embed_dim = to_q.shape |
|
attn_to_q = nn.Linear(hidden_dim, embed_dim, bias=False) |
|
attn_to_k = nn.Linear(hidden_dim, embed_dim, bias=False) |
|
attn_to_v = nn.Linear(hidden_dim, embed_dim, bias=False) |
|
attn_to_q.load_state_dict({"weight": to_q}) |
|
attn_to_k.load_state_dict({"weight": to_k}) |
|
attn_to_v.load_state_dict({"weight": to_v}) |
|
|
|
return torch.einsum( |
|
"ik, jk -> ik", |
|
F.softmax(torch.einsum("ij, kj -> ik", attn_to_q(rand_input), attn_to_k(rand_input)), dim=-1), |
|
attn_to_v(rand_input) |
|
) |
|
|
|
def model_hash(filename): |
|
try: |
|
with open(filename, "rb") as file: |
|
import hashlib |
|
m = hashlib.sha256() |
|
|
|
file.seek(0x100000) |
|
m.update(file.read(0x10000)) |
|
return m.hexdigest()[0:8] |
|
except FileNotFoundError: |
|
return 'NOFILE' |
|
|
|
def load_model(path): |
|
if path.suffix == ".safetensors": |
|
return load_file(path, device="cpu") |
|
else: |
|
ckpt = torch.load(path, map_location="cpu") |
|
return ckpt["state_dict"] if "state_dict" in ckpt else ckpt |
|
|
|
def eval(model, n, input): |
|
qk = f"model.diffusion_model.output_blocks.{n}.1.transformer_blocks.0.attn1.to_q.weight" |
|
uk = f"model.diffusion_model.output_blocks.{n}.1.transformer_blocks.0.attn1.to_k.weight" |
|
vk = f"model.diffusion_model.output_blocks.{n}.1.transformer_blocks.0.attn1.to_v.weight" |
|
atoq, atok, atov = model[qk], model[uk], model[vk] |
|
|
|
attn = cal_cross_attn(atoq, atok, atov, input) |
|
return attn |
|
|
|
def main(): |
|
file1 = Path(sys.argv[1]) |
|
files = sys.argv[2:] |
|
|
|
seed = 114514 |
|
torch.manual_seed(seed) |
|
print(f"seed: {seed}") |
|
|
|
model_a = load_model(file1) |
|
|
|
print() |
|
print(f"base: {file1.name} [{model_hash(file1)}]") |
|
print() |
|
|
|
map_attn_a = {} |
|
map_rand_input = {} |
|
for n in range(3, 11): |
|
hidden_dim, embed_dim = model_a[f"model.diffusion_model.output_blocks.{n}.1.transformer_blocks.0.attn1.to_q.weight"].shape |
|
rand_input = torch.randn([embed_dim, hidden_dim]) |
|
|
|
map_attn_a[n] = eval(model_a, n, rand_input) |
|
map_rand_input[n] = rand_input |
|
|
|
del model_a |
|
|
|
for file2 in files: |
|
file2 = Path(file2) |
|
model_b = load_model(file2) |
|
|
|
sims = [] |
|
for n in range(3, 11): |
|
attn_a = map_attn_a[n] |
|
attn_b = eval(model_b, n, map_rand_input[n]) |
|
|
|
sim = torch.mean(torch.cosine_similarity(attn_a, attn_b)) |
|
sims.append(sim) |
|
|
|
print(f"{file2} [{model_hash(file2)}] - {torch.mean(torch.stack(sims)) * 1e2:.2f}%") |
|
|
|
if __name__ == "__main__": |
|
main() |