--- license: gpl-3.0 --- # Easy CLIP Embeddings alignment with Guannaco Models ```python pipe = StableDiffusionPipeline(...) # llm_model = load_quant('/GuanacoOnConsumerHardware', 'guanaco7b-4bit-128g.pt', 4, 128, 0) llm_tokenizer = LlamaTokenizer.from_pretrained("JosephusCheung/Guanaco",use_fast=False,torch_dtype=torch.float16) llm_model = LlamaForCausalLM.from_pretrained("JosephusCheung/Guanaco",device_map="auto",torch_dtype=torch.float16) class LLMToCLIP(nn.Module): def __init__(self): super(LLMToCLIP, self).__init__() self.proj = nn.Linear(4096, 4096, bias=False) self.deproj = nn.Linear(4096, 768, bias=False) def forward(self, x): a = self.proj(x) b = self.deproj(a) return b llm_to_clip=LLMToCLIP() llm_to_clip.load_state_dict(torch.load("toclip.pth")) llm_embeddings = llm_model(input_ids=input_ids, output_hidden_states=True).hidden_states[-1] image = pipe(prompt_embeds=llm_to_clip(llm_embeddings)).images[0] ```