File size: 4,595 Bytes
ccca79b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse

from transformers import pipeline
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from datasets import load_dataset, Audio
import evaluate

wer_metric = evaluate.load("wer")


def is_target_text_in_range(ref):
    if ref.strip() == "ignore time segment in scoring":
        return False
    else:
        return ref.strip() != ""


def get_text(sample):
    if "text" in sample:
        return sample["text"]
    elif "sentence" in sample:
        return sample["sentence"]
    elif "normalized_text" in sample:
        return sample["normalized_text"]
    elif "transcript" in sample:
        return sample["transcript"]
    elif "transcription" in sample:
        return sample["transcription"]
    else:
        raise ValueError(
            f"Expected transcript column of either 'text', 'sentence', 'normalized_text' or 'transcript'. Got sample of "
            ".join{sample.keys()}. Ensure a text column name is present in the dataset."
        )


whisper_norm = BasicTextNormalizer()


def normalise(batch):
    batch["norm_text"] = whisper_norm(get_text(batch))
    return batch


def data(dataset):
    for i, item in enumerate(dataset):
        yield {**item["audio"], "reference": item["norm_text"]}


def main(args):
    batch_size = args.batch_size
    whisper_asr = pipeline(
        "automatic-speech-recognition", model=args.model_id, device=args.device
    )

    whisper_asr.model.config.forced_decoder_ids = (
        whisper_asr.tokenizer.get_decoder_prompt_ids(
            language=args.language, task="transcribe"
        )
    )

    dataset = load_dataset(
        args.dataset,
        args.config,
        split=args.split,
        streaming=args.streaming,
        use_auth_token=True,
    )

    # Only uncomment for debugging
    dataset = dataset.take(args.max_eval_samples)

    dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
    dataset = dataset.map(normalise)
    dataset = dataset.filter(is_target_text_in_range, input_columns=["norm_text"])

    predictions = []
    references = []

    # run streamed inference
    for out in whisper_asr(data(dataset), batch_size=batch_size):
        predictions.append(whisper_norm(out["text"]))
        references.append(out["reference"][0])

    wer = wer_metric.compute(references=references, predictions=predictions)
    wer = round(100 * wer, 2)

    print("WER:", wer)
    evaluate.push_to_hub(
        model_id=args.model_id,
        metric_value=wer,
        metric_type="wer",
        metric_name="WER",
        dataset_name=args.dataset,
        dataset_type=args.dataset,
        dataset_split=args.split,
        dataset_config=args.config,
        task_type="automatic-speech-recognition",
        task_name="Automatic Speech Recognition"
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--model_id",
        type=str,
        required=True,
        help="Model identifier. Should be loadable with 🤗 Transformers",
    )
    parser.add_argument(
        "--dataset",
        type=str,
        default="mozilla-foundation/common_voice_11_0",
        help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
    )
    parser.add_argument(
        "--config",
        type=str,
        required=True,
        help="Config of the dataset. *E.g.* `'en'` for the English split of Common Voice",
    )
    parser.add_argument(
        "--split",
        type=str,
        default="test",
        help="Split of the dataset. *E.g.* `'test'`",
    )

    parser.add_argument(
        "--device",
        type=int,
        default=-1,
        help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        default=16,
        help="Number of samples to go through each streamed batch.",
    )
    parser.add_argument(
        "--max_eval_samples",
        type=int,
        default=None,
        help="Number of samples to be evaluated. Put a lower number e.g. 64 for testing this script.",
    )
    parser.add_argument(
        "--streaming",
        type=bool,
        default=True,
        help="Choose whether you'd like to download the entire dataset or stream it during the evaluation.",
    )
    parser.add_argument(
        "--language",
        type=str,
        required=True,
        help="Two letter language code for the transcription language, e.g. use 'en' for English.",
    )
    args = parser.parse_args()

    main(args)