File size: 1,671 Bytes
0b2e037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80cb0e
 
 
 
 
 
 
 
 
0b2e037
c8d5658
 
 
0b2e037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
metrics:
- accuracy

model-index:
- name: dear-jarvis-monolith-xed-en
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dear-jarvis-monolith-xed-en

This model was trained from scratch on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7655
- Accuracy: 0.4678

## Model description

LABEL_0 = neutral  
LABEL_1 = anger  
LABEL_2 = anticipation  
LABEL_3 = disgust  
LABEL_4 = fear  
LABEL_5 = joy  
LABEL_6 = sadness  
LABEL_7 = surprise  
LABEL_8 = trust

Labels are based on Plutchik's model of emotions and may be combined:
![image](https://user-images.githubusercontent.com/12978899/122398897-f60d2500-cf97-11eb-8991-61e68f4ea1fc.png)

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5876        | 1.0   | 2003 | 1.5386          | 0.4596   |
| 1.1935        | 2.0   | 4006 | 1.5512          | 0.4803   |
| 0.7676        | 3.0   | 6009 | 1.7655          | 0.4678   |


### Framework versions

- Transformers 4.6.1
- Pytorch 1.8.1+cu101
- Datasets 1.8.0
- Tokenizers 0.10.3