Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.36 +/- 0.31
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b491f046087b32a60e4d0da90528b832150cbc56e02d4ea6351a6dfa931bfc3
|
3 |
+
size 108023
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[0.
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8fd0fda040>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f8fd0fd4570>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1674564484357039377,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAA1nAPuBdWLplqxI/A1nAPuBdWLplqxI/A1nAPuBdWLplqxI/A1nAPuBdWLplqxI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvaWnP4PTyz0awui9sCgVvkT/Ab/ptbG/96GYvrB0HT9y1sU/5gClP8ediT/gfdc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAADWcA+4F1YumWrEj/3GX08/eJGu59IcjwDWcA+4F1YumWrEj/3GX08/eJGu59IcjwDWcA+4F1YumWrEj/3GX08/eJGu59IcjwDWcA+4F1YumWrEj/3GX08/eJGu59IcjyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.3756791 -0.00082537 0.5729278 ]\n [ 0.3756791 -0.00082537 0.5729278 ]\n [ 0.3756791 -0.00082537 0.5729278 ]\n [ 0.3756791 -0.00082537 0.5729278 ]]",
|
60 |
+
"desired_goal": "[[ 1.3097454 0.09952452 -0.11365147]\n [-0.14566302 -0.5078013 -1.388364 ]\n [-0.2981107 0.61506176 1.5456069 ]\n [ 1.2890899 1.0751275 1.6835289 ]]",
|
61 |
+
"observation": "[[ 0.3756791 -0.00082537 0.5729278 0.01544809 -0.00303477 0.01478782]\n [ 0.3756791 -0.00082537 0.5729278 0.01544809 -0.00303477 0.01478782]\n [ 0.3756791 -0.00082537 0.5729278 0.01544809 -0.00303477 0.01478782]\n [ 0.3756791 -0.00082537 0.5729278 0.01544809 -0.00303477 0.01478782]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3vA+vG51NT07G+I9vhQmvX1H1T3fe4k+i69xPTA5zD30fSY9ryEbPHtXlj1b3SQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.01165411 0.04430144 0.1104035 ]\n [-0.04054713 0.10414026 0.2685232 ]\n [ 0.0590053 0.09971845 0.04064746]\n [ 0.00946848 0.07340904 0.16100065]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkC+hgsML2b+UhpRSlIwBbJRLMowBdJRHQKQwcXnhbW51fZQoaAZoCWgPQwi932jHDb/sv5SGlFKUaBVLMmgWR0CkMDaij+JhdX2UKGgGaAloD0MInUzcKoiB97+UhpRSlGgVSzJoFkdApC/6N0eU6nV9lChoBmgJaA9DCLtCHyxjA/6/lIaUUpRoFUsyaBZHQKQvwPIXCTF1fZQoaAZoCWgPQwhMxjGSPULmv5SGlFKUaBVLMmgWR0CkMYFtKqXGdX2UKGgGaAloD0MIDeNuEK0V+L+UhpRSlGgVSzJoFkdApDFGdRR/E3V9lChoBmgJaA9DCN5VD5iHTOK/lIaUUpRoFUsyaBZHQKQxCflIVdp1fZQoaAZoCWgPQwjtRh/zAUH8v5SGlFKUaBVLMmgWR0CkMNDHfdhzdX2UKGgGaAloD0MI6SrdXWdD9L+UhpRSlGgVSzJoFkdApDKThzeXRnV9lChoBmgJaA9DCNQNFHgnvwHAlIaUUpRoFUsyaBZHQKQyWJ9iMHd1fZQoaAZoCWgPQwi28/3UeOnwv5SGlFKUaBVLMmgWR0CkMhxBVuJldX2UKGgGaAloD0MIISHKF7RQ8b+UhpRSlGgVSzJoFkdApDHjH+6y0XV9lChoBmgJaA9DCJBMh07Pe/m/lIaUUpRoFUsyaBZHQKQzokM1CPZ1fZQoaAZoCWgPQwiXqrTFNX73v5SGlFKUaBVLMmgWR0CkM2czZYgadX2UKGgGaAloD0MIhJ7Nqs+V9r+UhpRSlGgVSzJoFkdApDMquloDgnV9lChoBmgJaA9DCFNYqaCiigTAlIaUUpRoFUsyaBZHQKQy8Yj0L+h1fZQoaAZoCWgPQwh5dvnWh/Xev5SGlFKUaBVLMmgWR0CkNLfVRUFTdX2UKGgGaAloD0MIrb66KlAL4b+UhpRSlGgVSzJoFkdApDR9QO4G2XV9lChoBmgJaA9DCArcupun+va/lIaUUpRoFUsyaBZHQKQ0QPjGT9t1fZQoaAZoCWgPQwhkIToEjoTov5SGlFKUaBVLMmgWR0CkNAghr30xdX2UKGgGaAloD0MI8fEJ2Xlb8L+UhpRSlGgVSzJoFkdApDXaEQGwA3V9lChoBmgJaA9DCE2/RLx1fuu/lIaUUpRoFUsyaBZHQKQ1ny7PIGR1fZQoaAZoCWgPQwhuTbotkQv1v5SGlFKUaBVLMmgWR0CkNWLVOKwZdX2UKGgGaAloD0MIgem0boPa97+UhpRSlGgVSzJoFkdApDUpf+jubHV9lChoBmgJaA9DCGNfsvFgi/G/lIaUUpRoFUsyaBZHQKQ255hz/6x1fZQoaAZoCWgPQwhihPBo48jxv5SGlFKUaBVLMmgWR0CkNqyidrftdX2UKGgGaAloD0MI7Q+U2/a9+7+UhpRSlGgVSzJoFkdApDZwTTOPenV9lChoBmgJaA9DCMIVUKinT/C/lIaUUpRoFUsyaBZHQKQ2NxVAAyV1fZQoaAZoCWgPQwhxBKkUO5rov5SGlFKUaBVLMmgWR0CkN/3EyckMdX2UKGgGaAloD0MIHxSUopU79L+UhpRSlGgVSzJoFkdApDfC5/b0v3V9lChoBmgJaA9DCFzII7iR8vG/lIaUUpRoFUsyaBZHQKQ3hp48lol1fZQoaAZoCWgPQwhRn+QOm8j3v5SGlFKUaBVLMmgWR0CkN02EkB0ZdX2UKGgGaAloD0MIjrETXoLT7r+UhpRSlGgVSzJoFkdApDkNbTtsvnV9lChoBmgJaA9DCED2evfH++O/lIaUUpRoFUsyaBZHQKQ40nxaxHJ1fZQoaAZoCWgPQwhJ10y+2WYGwJSGlFKUaBVLMmgWR0CkOJYMF2V3dX2UKGgGaAloD0MIaAdcV8yI87+UhpRSlGgVSzJoFkdApDhcse4kNXV9lChoBmgJaA9DCHKKjuTyH9i/lIaUUpRoFUsyaBZHQKQ6Gppeu3d1fZQoaAZoCWgPQwjwarkzE4zsv5SGlFKUaBVLMmgWR0CkOd+glF+edX2UKGgGaAloD0MII0vmWN7V+7+UhpRSlGgVSzJoFkdApDmjMzMzM3V9lChoBmgJaA9DCPCK4H8rGfC/lIaUUpRoFUsyaBZHQKQ5af3evZB1fZQoaAZoCWgPQwhljA+zl+31v5SGlFKUaBVLMmgWR0CkOy+zlcQidX2UKGgGaAloD0MIs82N6QlL6b+UhpRSlGgVSzJoFkdApDr0vAXVLHV9lChoBmgJaA9DCGDKwAEtnQDAlIaUUpRoFUsyaBZHQKQ6uFyJbdJ1fZQoaAZoCWgPQwitvU9VoYHsv5SGlFKUaBVLMmgWR0CkOn8pLEk0dX2UKGgGaAloD0MIo3kAi/zaAcCUhpRSlGgVSzJoFkdApDxQPiDM/3V9lChoBmgJaA9DCH5xqUpbnPG/lIaUUpRoFUsyaBZHQKQ8FUm2LHd1fZQoaAZoCWgPQwgfnbryWd72v5SGlFKUaBVLMmgWR0CkO9jqnm7rdX2UKGgGaAloD0MICoZzDTM07L+UhpRSlGgVSzJoFkdApDuftrsSkHV9lChoBmgJaA9DCJ0N+WcG8dW/lIaUUpRoFUsyaBZHQKQ9ZnTRYzV1fZQoaAZoCWgPQwg1Y9F0djL1v5SGlFKUaBVLMmgWR0CkPSuMVDa5dX2UKGgGaAloD0MIPNwODYvR8L+UhpRSlGgVSzJoFkdApDzvhIe5nXV9lChoBmgJaA9DCGuDE9GvLeO/lIaUUpRoFUsyaBZHQKQ8tl7tzCF1fZQoaAZoCWgPQwjbF9ALd44CwJSGlFKUaBVLMmgWR0CkPnz6i0v5dX2UKGgGaAloD0MIMq1NY3tt8r+UhpRSlGgVSzJoFkdApD5CFEiMYXV9lChoBmgJaA9DCHRFKSFYVQLAlIaUUpRoFUsyaBZHQKQ+BYW+GoJ1fZQoaAZoCWgPQwi1UZ0OZB0FwJSGlFKUaBVLMmgWR0CkPcwlByCGdX2UKGgGaAloD0MIiqvKviuC67+UhpRSlGgVSzJoFkdApD+QhQm/nHV9lChoBmgJaA9DCMnKL4MxouW/lIaUUpRoFUsyaBZHQKQ/VaIvalF1fZQoaAZoCWgPQwgZc9cS8gH1v5SGlFKUaBVLMmgWR0CkPxlJYkmhdX2UKGgGaAloD0MIm8qisIsi8r+UhpRSlGgVSzJoFkdApD7gLPUrkXV9lChoBmgJaA9DCN0nRwGiYPm/lIaUUpRoFUsyaBZHQKRAthYNiH91fZQoaAZoCWgPQwhx4qsdxTnzv5SGlFKUaBVLMmgWR0CkQHs3qAz6dX2UKGgGaAloD0MIUFCKVu6F4r+UhpRSlGgVSzJoFkdApEA+7YkE93V9lChoBmgJaA9DCI9v7xr0JeK/lIaUUpRoFUsyaBZHQKRABciW3Sd1fZQoaAZoCWgPQwh3FVJ+Ui3/v5SGlFKUaBVLMmgWR0CkQcnAIppfdX2UKGgGaAloD0MIIlFoWfcP4r+UhpRSlGgVSzJoFkdApEGOzv7WNHV9lChoBmgJaA9DCOC6YkZ4e+q/lIaUUpRoFUsyaBZHQKRBUmsNlRR1fZQoaAZoCWgPQwge4bTgRV/ov5SGlFKUaBVLMmgWR0CkQRk/0NBodX2UKGgGaAloD0MIo1nZPuSt+r+UhpRSlGgVSzJoFkdApELegDifhHV9lChoBmgJaA9DCDGale1D3vW/lIaUUpRoFUsyaBZHQKRCo4dZJTV1fZQoaAZoCWgPQwhKQbeXNMbwv5SGlFKUaBVLMmgWR0CkQmcsDnvEdX2UKGgGaAloD0MILv62J0is9L+UhpRSlGgVSzJoFkdApEIt8b70nXV9lChoBmgJaA9DCAWk/Q+wlvO/lIaUUpRoFUsyaBZHQKRD7yDIzWR1fZQoaAZoCWgPQwjghhivedXtv5SGlFKUaBVLMmgWR0CkQ7Q66reZdX2UKGgGaAloD0MIahMn9zuU6r+UhpRSlGgVSzJoFkdApEN38AJb+3V9lChoBmgJaA9DCBfvx+2XD/q/lIaUUpRoFUsyaBZHQKRDPruYx+N1fZQoaAZoCWgPQwgtI/Weyun/v5SGlFKUaBVLMmgWR0CkRQN7KJVKdX2UKGgGaAloD0MIppiDoKPV8b+UhpRSlGgVSzJoFkdApETIiNbTt3V9lChoBmgJaA9DCNoc5zbhXvi/lIaUUpRoFUsyaBZHQKREjCpm29d1fZQoaAZoCWgPQwjNc0S+S2nyv5SGlFKUaBVLMmgWR0CkRFL7O3UhdX2UKGgGaAloD0MIbCbfbHNj5b+UhpRSlGgVSzJoFkdApEYVoSL613V9lChoBmgJaA9DCBO3CmKgq/q/lIaUUpRoFUsyaBZHQKRF2rfcesB1fZQoaAZoCWgPQwh0zk9xHPjjv5SGlFKUaBVLMmgWR0CkRZ6KLsKLdX2UKGgGaAloD0MIH2RZMPFH37+UhpRSlGgVSzJoFkdApEVla+vhZXV9lChoBmgJaA9DCMgJE0azMve/lIaUUpRoFUsyaBZHQKRHOwh4dIZ1fZQoaAZoCWgPQwjr/xzmywv8v5SGlFKUaBVLMmgWR0CkRwAOrhitdX2UKGgGaAloD0MIWtWSjnKQA8CUhpRSlGgVSzJoFkdApEbDjR2KVXV9lChoBmgJaA9DCDhorz4e+vO/lIaUUpRoFUsyaBZHQKRGimGdqcp1fZQoaAZoCWgPQwj6muWy0fnwv5SGlFKUaBVLMmgWR0CkSEx4hUzbdX2UKGgGaAloD0MIc9h9x/BYAcCUhpRSlGgVSzJoFkdApEgRbt7a7HV9lChoBmgJaA9DCM+7saAwKOi/lIaUUpRoFUsyaBZHQKRH1QemvW91fZQoaAZoCWgPQwiPNo5Yi0/yv5SGlFKUaBVLMmgWR0CkR5vci4axdX2UKGgGaAloD0MIgJ4GDJI+27+UhpRSlGgVSzJoFkdApElb3/Pw/nV9lChoBmgJaA9DCG399J81P+2/lIaUUpRoFUsyaBZHQKRJIOEM9bJ1fZQoaAZoCWgPQwj2B8pt+x7pv5SGlFKUaBVLMmgWR0CkSOR7iQ1adX2UKGgGaAloD0MIyOvBpPjYAsCUhpRSlGgVSzJoFkdApEirTDwYtXV9lChoBmgJaA9DCC3OGOYE7fO/lIaUUpRoFUsyaBZHQKRKbm0VrRB1fZQoaAZoCWgPQwi4O2u3XcgAwJSGlFKUaBVLMmgWR0CkSjN3fQ8fdX2UKGgGaAloD0MIfXiWICMg/L+UhpRSlGgVSzJoFkdApEn3IMjNZHV9lChoBmgJaA9DCOGzdXCwt+y/lIaUUpRoFUsyaBZHQKRJveMyaeB1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 50000,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:351f8474b4bc7bce06580b61b41cbb14f87a2f46194346fe6fb62189c1abc544
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a0312c3c04b2d91917653a685b36ce122b5955a71970c514214c044f0d23ce4
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f45b652b280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f45b6523a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674553790871406090, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAQ2/dPldbCj3s+BM/Q2/dPldbCj3s+BM/Q2/dPldbCj3s+BM/Q2/dPldbCj3s+BM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAi2BpvwkumT/3b8K/ahmWv49oE7/DAYm/PS2Pv4aunb/8tK6/NsQ2P2rW3b+hb8+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABDb90+V1sKPez4Ez+LhMW7g+FiumW4rrpDb90+V1sKPez4Ez+LhMW7g+FiumW4rrpDb90+V1sKPez4Ez+LhMW7g+FiumW4rrpDb90+V1sKPez4Ez+LhMW7g+FiumW4rrqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43248948 0.03377851 0.578017 ]\n [0.43248948 0.03377851 0.578017 ]\n [0.43248948 0.03377851 0.578017 ]\n [0.43248948 0.03377851 0.578017 ]]", "desired_goal": "[[-0.9116294 1.1967174 -1.5190419 ]\n [-1.1726506 -0.5758142 -1.0703663 ]\n [-1.1185681 -1.2318885 -1.3648982 ]\n [ 0.71393144 -1.7331059 -1.6205941 ]]", "observation": "[[ 0.43248948 0.03377851 0.578017 -0.00602776 -0.00086548 -0.00133301]\n [ 0.43248948 0.03377851 0.578017 -0.00602776 -0.00086548 -0.00133301]\n [ 0.43248948 0.03377851 0.578017 -0.00602776 -0.00086548 -0.00133301]\n [ 0.43248948 0.03377851 0.578017 -0.00602776 -0.00086548 -0.00133301]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbpLRPfWjfL0gc249eLIbOzvNh73zK949p80Rvdf/jTyig1M8+35GvaKVLL2UY3I+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10233007 -0.0616798 0.05821526]\n [ 0.00237575 -0.06630941 0.10848226]\n [-0.03559652 0.01733391 0.0129098 ]\n [-0.04846094 -0.04213489 0.23670799]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI393KEp2lBcCUhpRSlIwBbJRLMowBdJRHQLNdMdI5HVh1fZQoaAZoCWgPQwhGlPYGX7gHwJSGlFKUaBVLMmgWR0CzXQy8WbgCdX2UKGgGaAloD0MIR60wfa9hBsCUhpRSlGgVSzJoFkdAs1zvHuJDV3V9lChoBmgJaA9DCN4BnrRwGRPAlIaUUpRoFUsyaBZHQLNc0WEbo8p1fZQoaAZoCWgPQwiR71LqkrENwJSGlFKUaBVLMmgWR0CzXZsaOxSpdX2UKGgGaAloD0MI8WYN3lcFE8CUhpRSlGgVSzJoFkdAs112BSUC73V9lChoBmgJaA9DCB9JSQ9DawfAlIaUUpRoFUsyaBZHQLNdWFQEZBN1fZQoaAZoCWgPQwhYy52ZYHgCwJSGlFKUaBVLMmgWR0CzXTqVhTfjdX2UKGgGaAloD0MIGlJF8So7EcCUhpRSlGgVSzJoFkdAs14HjkuHvnV9lChoBmgJaA9DCONrzywJABTAlIaUUpRoFUsyaBZHQLNd4nDziCJ1fZQoaAZoCWgPQwghc2VQbZAJwJSGlFKUaBVLMmgWR0CzXcSvcJt0dX2UKGgGaAloD0MIOj3vxoJCBsCUhpRSlGgVSzJoFkdAs12m8mKIi3V9lChoBmgJaA9DCASNmUS9QAfAlIaUUpRoFUsyaBZHQLNecCW/rSp1fZQoaAZoCWgPQwiFC3kEN1ICwJSGlFKUaBVLMmgWR0CzXksSbpeNdX2UKGgGaAloD0MILuQR3Eh5BcCUhpRSlGgVSzJoFkdAs14tVDKHPHV9lChoBmgJaA9DCE57Ss6JHQTAlIaUUpRoFUsyaBZHQLNeD5WBBiV1fZQoaAZoCWgPQwgWTz3S4OYRwJSGlFKUaBVLMmgWR0CzXtt/J/5MdX2UKGgGaAloD0MI+OEgIcpXCcCUhpRSlGgVSzJoFkdAs162b4Ju23V9lChoBmgJaA9DCBo09E9wsQ/AlIaUUpRoFUsyaBZHQLNemKtxMnJ1fZQoaAZoCWgPQwjAQBAgQwcJwJSGlFKUaBVLMmgWR0CzXnry1/lRdX2UKGgGaAloD0MI2ZlC5zU2EcCUhpRSlGgVSzJoFkdAs19GhzvJBHV9lChoBmgJaA9DCKWeBaG8zxTAlIaUUpRoFUsyaBZHQLNfIW0Z3s51fZQoaAZoCWgPQwgPmIdM+bAIwJSGlFKUaBVLMmgWR0CzXwOqFRHgdX2UKGgGaAloD0MIY0M3+wNlG8CUhpRSlGgVSzJoFkdAs17l5Y5ksnV9lChoBmgJaA9DCBmrzf+rrgvAlIaUUpRoFUsyaBZHQLNfrz4UN8V1fZQoaAZoCWgPQwiFsvD1tc4OwJSGlFKUaBVLMmgWR0CzX4orJ8v3dX2UKGgGaAloD0MI/Wg4ZW6eD8CUhpRSlGgVSzJoFkdAs19sbjtG/nV9lChoBmgJaA9DCOMcdXRcDQfAlIaUUpRoFUsyaBZHQLNfTqcmShd1fZQoaAZoCWgPQwjb39kevWEPwJSGlFKUaBVLMmgWR0CzYBu85CF9dX2UKGgGaAloD0MIHcu76gFzBcCUhpRSlGgVSzJoFkdAs1/2oNutOnV9lChoBmgJaA9DCFlqvd9oJw7AlIaUUpRoFUsyaBZHQLNf2OD8Lrp1fZQoaAZoCWgPQwjcZFQZxr0HwJSGlFKUaBVLMmgWR0CzX7seOn2qdX2UKGgGaAloD0MIZW1TPC7qBcCUhpRSlGgVSzJoFkdAs2CBlVcUunV9lChoBmgJaA9DCJ5dvvVhHQfAlIaUUpRoFUsyaBZHQLNgXJBgNPR1fZQoaAZoCWgPQwgIyQImcOsGwJSGlFKUaBVLMmgWR0CzYD7XYlIFdX2UKGgGaAloD0MIb7plh/i3E8CUhpRSlGgVSzJoFkdAs2AhGe+VT3V9lChoBmgJaA9DCC+mme51sgzAlIaUUpRoFUsyaBZHQLNg+SGrS3N1fZQoaAZoCWgPQwhUAfc8fxoFwJSGlFKUaBVLMmgWR0CzYNQRwqAjdX2UKGgGaAloD0MIHccPlUZMFsCUhpRSlGgVSzJoFkdAs2C2WTot+XV9lChoBmgJaA9DCFHaG3xhcgTAlIaUUpRoFUsyaBZHQLNgmKKYRd11fZQoaAZoCWgPQwhBf6FHjN4DwJSGlFKUaBVLMmgWR0CzYWuE/SpjdX2UKGgGaAloD0MI93e2R28IE8CUhpRSlGgVSzJoFkdAs2FGhg3Lm3V9lChoBmgJaA9DCBiUaTS52AjAlIaUUpRoFUsyaBZHQLNhKMZxaPl1fZQoaAZoCWgPQwhZ+WUwRtQQwJSGlFKUaBVLMmgWR0CzYQsFlkH2dX2UKGgGaAloD0MIi4o4nWQLFsCUhpRSlGgVSzJoFkdAs2HbZzxPPHV9lChoBmgJaA9DCMCzPXrD/QjAlIaUUpRoFUsyaBZHQLNhtlt0mt11fZQoaAZoCWgPQwj3BfTCnWsEwJSGlFKUaBVLMmgWR0CzYZiaqjrSdX2UKGgGaAloD0MIl445z9j3B8CUhpRSlGgVSzJoFkdAs2F613MY/HV9lChoBmgJaA9DCP7viArVrQrAlIaUUpRoFUsyaBZHQLNiTtv4ubt1fZQoaAZoCWgPQwgkDAOWXHUQwJSGlFKUaBVLMmgWR0CzYinKW9lFdX2UKGgGaAloD0MII4Wy8PVVE8CUhpRSlGgVSzJoFkdAs2IMBuGbkXV9lChoBmgJaA9DCDM0ngjiHA/AlIaUUpRoFUsyaBZHQLNh7khib2F1fZQoaAZoCWgPQwh2xCEbSJcGwJSGlFKUaBVLMmgWR0CzYraFh5PedX2UKGgGaAloD0MIILWJk/u9A8CUhpRSlGgVSzJoFkdAs2KRc7hegXV9lChoBmgJaA9DCNtsrMQ8yw7AlIaUUpRoFUsyaBZHQLNic6/7BO51fZQoaAZoCWgPQwidg2dCk4QJwJSGlFKUaBVLMmgWR0CzYlXtKIzndX2UKGgGaAloD0MILPTBMjbUDMCUhpRSlGgVSzJoFkdAs2MgfigkC3V9lChoBmgJaA9DCFzknq7uWAjAlIaUUpRoFUsyaBZHQLNi+2jwhGJ1fZQoaAZoCWgPQwjFxVG5iVoGwJSGlFKUaBVLMmgWR0CzYt2jO9nLdX2UKGgGaAloD0MIVdtN8E3zC8CUhpRSlGgVSzJoFkdAs2K/13+uNnV9lChoBmgJaA9DCCoaa39n6xDAlIaUUpRoFUsyaBZHQLNji2IwdsB1fZQoaAZoCWgPQwg8aHbdW1EGwJSGlFKUaBVLMmgWR0CzY2ZJTVDsdX2UKGgGaAloD0MIsylXeJfLBcCUhpRSlGgVSzJoFkdAs2NImmce83V9lChoBmgJaA9DCA5qv7UTRQPAlIaUUpRoFUsyaBZHQLNjKuejEeh1fZQoaAZoCWgPQwhX0R+aeXIEwJSGlFKUaBVLMmgWR0CzY/a4H5aedX2UKGgGaAloD0MIumddo+VACcCUhpRSlGgVSzJoFkdAs2PRqbjLjnV9lChoBmgJaA9DCFQ57Sk51xDAlIaUUpRoFUsyaBZHQLNjs+Zw4sF1fZQoaAZoCWgPQwgGEalpF9MFwJSGlFKUaBVLMmgWR0CzY5YmPYFrdX2UKGgGaAloD0MIjnObcK+MCMCUhpRSlGgVSzJoFkdAs2RedBjWkXV9lChoBmgJaA9DCK+WOzPB8AbAlIaUUpRoFUsyaBZHQLNkOWNFSbZ1fZQoaAZoCWgPQwhEiZY8nnYNwJSGlFKUaBVLMmgWR0CzZBuaBqbjdX2UKGgGaAloD0MIjgHZ692vEMCUhpRSlGgVSzJoFkdAs2P90ZFXrHV9lChoBmgJaA9DCNcv2A3btgvAlIaUUpRoFUsyaBZHQLNkxsDnvDx1fZQoaAZoCWgPQwgwgPChRIsPwJSGlFKUaBVLMmgWR0CzZKGo73fydX2UKGgGaAloD0MInnx6bMsADsCUhpRSlGgVSzJoFkdAs2SD7vXsgXV9lChoBmgJaA9DCBRBnIcT+A7AlIaUUpRoFUsyaBZHQLNkZizsyBV1fZQoaAZoCWgPQwiEnWLVIEwFwJSGlFKUaBVLMmgWR0CzZTLTMJQddX2UKGgGaAloD0MIjiEAOPbMCsCUhpRSlGgVSzJoFkdAs2UNxBE8aHV9lChoBmgJaA9DCLAApgwccA3AlIaUUpRoFUsyaBZHQLNk8AgxJul1fZQoaAZoCWgPQwizXgzlRBsKwJSGlFKUaBVLMmgWR0CzZNJLytmudX2UKGgGaAloD0MIwsO0b+5vD8CUhpRSlGgVSzJoFkdAs2WbC66J7HV9lChoBmgJaA9DCMXkDTDz7RHAlIaUUpRoFUsyaBZHQLNldf3evZB1fZQoaAZoCWgPQwh4mzdOCpMGwJSGlFKUaBVLMmgWR0CzZVg4OtnxdX2UKGgGaAloD0MIpI0j1uJTEsCUhpRSlGgVSzJoFkdAs2U6lYU343V9lChoBmgJaA9DCDUlWYejawrAlIaUUpRoFUsyaBZHQLNmBxd6cAl1fZQoaAZoCWgPQwheZ0P+mbETwJSGlFKUaBVLMmgWR0CzZeIEjgQ6dX2UKGgGaAloD0MIlwFnKVkODMCUhpRSlGgVSzJoFkdAs2XETakAP3V9lChoBmgJaA9DCEqX/iWpjBHAlIaUUpRoFUsyaBZHQLNlpoddVvN1fZQoaAZoCWgPQwgkfsUaLsIQwJSGlFKUaBVLMmgWR0CzZnCZrpJPdX2UKGgGaAloD0MIdJZZhGJLFMCUhpRSlGgVSzJoFkdAs2ZLiJfplnV9lChoBmgJaA9DCE3cKoiBDgXAlIaUUpRoFUsyaBZHQLNmLc0Ltu11fZQoaAZoCWgPQwhFniRdMxkIwJSGlFKUaBVLMmgWR0CzZhAOz6acdX2UKGgGaAloD0MIp7Io7KLoDsCUhpRSlGgVSzJoFkdAs2bYbkwN9nV9lChoBmgJaA9DCAzIXu/+eBTAlIaUUpRoFUsyaBZHQLNms1Muez51fZQoaAZoCWgPQwhtN8E3Tb8EwJSGlFKUaBVLMmgWR0CzZpWNWEK3dX2UKGgGaAloD0MIhH8RNGYiEsCUhpRSlGgVSzJoFkdAs2Z3xUedTnV9lChoBmgJaA9DCL8s7dRcLgjAlIaUUpRoFUsyaBZHQLNnQc5bQkZ1fZQoaAZoCWgPQwjxLawb7+4DwJSGlFKUaBVLMmgWR0CzZxy6cy31dX2UKGgGaAloD0MI0clS6/2GB8CUhpRSlGgVSzJoFkdAs2b+9TP0I3V9lChoBmgJaA9DCF/uk6MAMQXAlIaUUpRoFUsyaBZHQLNm4TS9du51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8fd0fda040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8fd0fd4570>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674564484357039377, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAA1nAPuBdWLplqxI/A1nAPuBdWLplqxI/A1nAPuBdWLplqxI/A1nAPuBdWLplqxI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvaWnP4PTyz0awui9sCgVvkT/Ab/ptbG/96GYvrB0HT9y1sU/5gClP8ediT/gfdc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAADWcA+4F1YumWrEj/3GX08/eJGu59IcjwDWcA+4F1YumWrEj/3GX08/eJGu59IcjwDWcA+4F1YumWrEj/3GX08/eJGu59IcjwDWcA+4F1YumWrEj/3GX08/eJGu59IcjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3756791 -0.00082537 0.5729278 ]\n [ 0.3756791 -0.00082537 0.5729278 ]\n [ 0.3756791 -0.00082537 0.5729278 ]\n [ 0.3756791 -0.00082537 0.5729278 ]]", "desired_goal": "[[ 1.3097454 0.09952452 -0.11365147]\n [-0.14566302 -0.5078013 -1.388364 ]\n [-0.2981107 0.61506176 1.5456069 ]\n [ 1.2890899 1.0751275 1.6835289 ]]", "observation": "[[ 0.3756791 -0.00082537 0.5729278 0.01544809 -0.00303477 0.01478782]\n [ 0.3756791 -0.00082537 0.5729278 0.01544809 -0.00303477 0.01478782]\n [ 0.3756791 -0.00082537 0.5729278 0.01544809 -0.00303477 0.01478782]\n [ 0.3756791 -0.00082537 0.5729278 0.01544809 -0.00303477 0.01478782]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3vA+vG51NT07G+I9vhQmvX1H1T3fe4k+i69xPTA5zD30fSY9ryEbPHtXlj1b3SQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01165411 0.04430144 0.1104035 ]\n [-0.04054713 0.10414026 0.2685232 ]\n [ 0.0590053 0.09971845 0.04064746]\n [ 0.00946848 0.07340904 0.16100065]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkC+hgsML2b+UhpRSlIwBbJRLMowBdJRHQKQwcXnhbW51fZQoaAZoCWgPQwi932jHDb/sv5SGlFKUaBVLMmgWR0CkMDaij+JhdX2UKGgGaAloD0MInUzcKoiB97+UhpRSlGgVSzJoFkdApC/6N0eU6nV9lChoBmgJaA9DCLtCHyxjA/6/lIaUUpRoFUsyaBZHQKQvwPIXCTF1fZQoaAZoCWgPQwhMxjGSPULmv5SGlFKUaBVLMmgWR0CkMYFtKqXGdX2UKGgGaAloD0MIDeNuEK0V+L+UhpRSlGgVSzJoFkdApDFGdRR/E3V9lChoBmgJaA9DCN5VD5iHTOK/lIaUUpRoFUsyaBZHQKQxCflIVdp1fZQoaAZoCWgPQwjtRh/zAUH8v5SGlFKUaBVLMmgWR0CkMNDHfdhzdX2UKGgGaAloD0MI6SrdXWdD9L+UhpRSlGgVSzJoFkdApDKThzeXRnV9lChoBmgJaA9DCNQNFHgnvwHAlIaUUpRoFUsyaBZHQKQyWJ9iMHd1fZQoaAZoCWgPQwi28/3UeOnwv5SGlFKUaBVLMmgWR0CkMhxBVuJldX2UKGgGaAloD0MIISHKF7RQ8b+UhpRSlGgVSzJoFkdApDHjH+6y0XV9lChoBmgJaA9DCJBMh07Pe/m/lIaUUpRoFUsyaBZHQKQzokM1CPZ1fZQoaAZoCWgPQwiXqrTFNX73v5SGlFKUaBVLMmgWR0CkM2czZYgadX2UKGgGaAloD0MIhJ7Nqs+V9r+UhpRSlGgVSzJoFkdApDMquloDgnV9lChoBmgJaA9DCFNYqaCiigTAlIaUUpRoFUsyaBZHQKQy8Yj0L+h1fZQoaAZoCWgPQwh5dvnWh/Xev5SGlFKUaBVLMmgWR0CkNLfVRUFTdX2UKGgGaAloD0MIrb66KlAL4b+UhpRSlGgVSzJoFkdApDR9QO4G2XV9lChoBmgJaA9DCArcupun+va/lIaUUpRoFUsyaBZHQKQ0QPjGT9t1fZQoaAZoCWgPQwhkIToEjoTov5SGlFKUaBVLMmgWR0CkNAghr30xdX2UKGgGaAloD0MI8fEJ2Xlb8L+UhpRSlGgVSzJoFkdApDXaEQGwA3V9lChoBmgJaA9DCE2/RLx1fuu/lIaUUpRoFUsyaBZHQKQ1ny7PIGR1fZQoaAZoCWgPQwhuTbotkQv1v5SGlFKUaBVLMmgWR0CkNWLVOKwZdX2UKGgGaAloD0MIgem0boPa97+UhpRSlGgVSzJoFkdApDUpf+jubHV9lChoBmgJaA9DCGNfsvFgi/G/lIaUUpRoFUsyaBZHQKQ255hz/6x1fZQoaAZoCWgPQwhihPBo48jxv5SGlFKUaBVLMmgWR0CkNqyidrftdX2UKGgGaAloD0MI7Q+U2/a9+7+UhpRSlGgVSzJoFkdApDZwTTOPenV9lChoBmgJaA9DCMIVUKinT/C/lIaUUpRoFUsyaBZHQKQ2NxVAAyV1fZQoaAZoCWgPQwhxBKkUO5rov5SGlFKUaBVLMmgWR0CkN/3EyckMdX2UKGgGaAloD0MIHxSUopU79L+UhpRSlGgVSzJoFkdApDfC5/b0v3V9lChoBmgJaA9DCFzII7iR8vG/lIaUUpRoFUsyaBZHQKQ3hp48lol1fZQoaAZoCWgPQwhRn+QOm8j3v5SGlFKUaBVLMmgWR0CkN02EkB0ZdX2UKGgGaAloD0MIjrETXoLT7r+UhpRSlGgVSzJoFkdApDkNbTtsvnV9lChoBmgJaA9DCED2evfH++O/lIaUUpRoFUsyaBZHQKQ40nxaxHJ1fZQoaAZoCWgPQwhJ10y+2WYGwJSGlFKUaBVLMmgWR0CkOJYMF2V3dX2UKGgGaAloD0MIaAdcV8yI87+UhpRSlGgVSzJoFkdApDhcse4kNXV9lChoBmgJaA9DCHKKjuTyH9i/lIaUUpRoFUsyaBZHQKQ6Gppeu3d1fZQoaAZoCWgPQwjwarkzE4zsv5SGlFKUaBVLMmgWR0CkOd+glF+edX2UKGgGaAloD0MII0vmWN7V+7+UhpRSlGgVSzJoFkdApDmjMzMzM3V9lChoBmgJaA9DCPCK4H8rGfC/lIaUUpRoFUsyaBZHQKQ5af3evZB1fZQoaAZoCWgPQwhljA+zl+31v5SGlFKUaBVLMmgWR0CkOy+zlcQidX2UKGgGaAloD0MIs82N6QlL6b+UhpRSlGgVSzJoFkdApDr0vAXVLHV9lChoBmgJaA9DCGDKwAEtnQDAlIaUUpRoFUsyaBZHQKQ6uFyJbdJ1fZQoaAZoCWgPQwitvU9VoYHsv5SGlFKUaBVLMmgWR0CkOn8pLEk0dX2UKGgGaAloD0MIo3kAi/zaAcCUhpRSlGgVSzJoFkdApDxQPiDM/3V9lChoBmgJaA9DCH5xqUpbnPG/lIaUUpRoFUsyaBZHQKQ8FUm2LHd1fZQoaAZoCWgPQwgfnbryWd72v5SGlFKUaBVLMmgWR0CkO9jqnm7rdX2UKGgGaAloD0MICoZzDTM07L+UhpRSlGgVSzJoFkdApDuftrsSkHV9lChoBmgJaA9DCJ0N+WcG8dW/lIaUUpRoFUsyaBZHQKQ9ZnTRYzV1fZQoaAZoCWgPQwg1Y9F0djL1v5SGlFKUaBVLMmgWR0CkPSuMVDa5dX2UKGgGaAloD0MIPNwODYvR8L+UhpRSlGgVSzJoFkdApDzvhIe5nXV9lChoBmgJaA9DCGuDE9GvLeO/lIaUUpRoFUsyaBZHQKQ8tl7tzCF1fZQoaAZoCWgPQwjbF9ALd44CwJSGlFKUaBVLMmgWR0CkPnz6i0v5dX2UKGgGaAloD0MIMq1NY3tt8r+UhpRSlGgVSzJoFkdApD5CFEiMYXV9lChoBmgJaA9DCHRFKSFYVQLAlIaUUpRoFUsyaBZHQKQ+BYW+GoJ1fZQoaAZoCWgPQwi1UZ0OZB0FwJSGlFKUaBVLMmgWR0CkPcwlByCGdX2UKGgGaAloD0MIiqvKviuC67+UhpRSlGgVSzJoFkdApD+QhQm/nHV9lChoBmgJaA9DCMnKL4MxouW/lIaUUpRoFUsyaBZHQKQ/VaIvalF1fZQoaAZoCWgPQwgZc9cS8gH1v5SGlFKUaBVLMmgWR0CkPxlJYkmhdX2UKGgGaAloD0MIm8qisIsi8r+UhpRSlGgVSzJoFkdApD7gLPUrkXV9lChoBmgJaA9DCN0nRwGiYPm/lIaUUpRoFUsyaBZHQKRAthYNiH91fZQoaAZoCWgPQwhx4qsdxTnzv5SGlFKUaBVLMmgWR0CkQHs3qAz6dX2UKGgGaAloD0MIUFCKVu6F4r+UhpRSlGgVSzJoFkdApEA+7YkE93V9lChoBmgJaA9DCI9v7xr0JeK/lIaUUpRoFUsyaBZHQKRABciW3Sd1fZQoaAZoCWgPQwh3FVJ+Ui3/v5SGlFKUaBVLMmgWR0CkQcnAIppfdX2UKGgGaAloD0MIIlFoWfcP4r+UhpRSlGgVSzJoFkdApEGOzv7WNHV9lChoBmgJaA9DCOC6YkZ4e+q/lIaUUpRoFUsyaBZHQKRBUmsNlRR1fZQoaAZoCWgPQwge4bTgRV/ov5SGlFKUaBVLMmgWR0CkQRk/0NBodX2UKGgGaAloD0MIo1nZPuSt+r+UhpRSlGgVSzJoFkdApELegDifhHV9lChoBmgJaA9DCDGale1D3vW/lIaUUpRoFUsyaBZHQKRCo4dZJTV1fZQoaAZoCWgPQwhKQbeXNMbwv5SGlFKUaBVLMmgWR0CkQmcsDnvEdX2UKGgGaAloD0MILv62J0is9L+UhpRSlGgVSzJoFkdApEIt8b70nXV9lChoBmgJaA9DCAWk/Q+wlvO/lIaUUpRoFUsyaBZHQKRD7yDIzWR1fZQoaAZoCWgPQwjghhivedXtv5SGlFKUaBVLMmgWR0CkQ7Q66reZdX2UKGgGaAloD0MIahMn9zuU6r+UhpRSlGgVSzJoFkdApEN38AJb+3V9lChoBmgJaA9DCBfvx+2XD/q/lIaUUpRoFUsyaBZHQKRDPruYx+N1fZQoaAZoCWgPQwgtI/Weyun/v5SGlFKUaBVLMmgWR0CkRQN7KJVKdX2UKGgGaAloD0MIppiDoKPV8b+UhpRSlGgVSzJoFkdApETIiNbTt3V9lChoBmgJaA9DCNoc5zbhXvi/lIaUUpRoFUsyaBZHQKREjCpm29d1fZQoaAZoCWgPQwjNc0S+S2nyv5SGlFKUaBVLMmgWR0CkRFL7O3UhdX2UKGgGaAloD0MIbCbfbHNj5b+UhpRSlGgVSzJoFkdApEYVoSL613V9lChoBmgJaA9DCBO3CmKgq/q/lIaUUpRoFUsyaBZHQKRF2rfcesB1fZQoaAZoCWgPQwh0zk9xHPjjv5SGlFKUaBVLMmgWR0CkRZ6KLsKLdX2UKGgGaAloD0MIH2RZMPFH37+UhpRSlGgVSzJoFkdApEVla+vhZXV9lChoBmgJaA9DCMgJE0azMve/lIaUUpRoFUsyaBZHQKRHOwh4dIZ1fZQoaAZoCWgPQwjr/xzmywv8v5SGlFKUaBVLMmgWR0CkRwAOrhitdX2UKGgGaAloD0MIWtWSjnKQA8CUhpRSlGgVSzJoFkdApEbDjR2KVXV9lChoBmgJaA9DCDhorz4e+vO/lIaUUpRoFUsyaBZHQKRGimGdqcp1fZQoaAZoCWgPQwj6muWy0fnwv5SGlFKUaBVLMmgWR0CkSEx4hUzbdX2UKGgGaAloD0MIc9h9x/BYAcCUhpRSlGgVSzJoFkdApEgRbt7a7HV9lChoBmgJaA9DCM+7saAwKOi/lIaUUpRoFUsyaBZHQKRH1QemvW91fZQoaAZoCWgPQwiPNo5Yi0/yv5SGlFKUaBVLMmgWR0CkR5vci4axdX2UKGgGaAloD0MIgJ4GDJI+27+UhpRSlGgVSzJoFkdApElb3/Pw/nV9lChoBmgJaA9DCG399J81P+2/lIaUUpRoFUsyaBZHQKRJIOEM9bJ1fZQoaAZoCWgPQwj2B8pt+x7pv5SGlFKUaBVLMmgWR0CkSOR7iQ1adX2UKGgGaAloD0MIyOvBpPjYAsCUhpRSlGgVSzJoFkdApEirTDwYtXV9lChoBmgJaA9DCC3OGOYE7fO/lIaUUpRoFUsyaBZHQKRKbm0VrRB1fZQoaAZoCWgPQwi4O2u3XcgAwJSGlFKUaBVLMmgWR0CkSjN3fQ8fdX2UKGgGaAloD0MIfXiWICMg/L+UhpRSlGgVSzJoFkdApEn3IMjNZHV9lChoBmgJaA9DCOGzdXCwt+y/lIaUUpRoFUsyaBZHQKRJveMyaeB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.3627268880140035, "std_reward": 0.30984127666814953, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T13:38:17.693590"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea14752cb6fb9c854bc258d94fb187a71dbd31d6c5942e00bd86fc802df9e650
|
3 |
size 3056
|