File size: 2,006 Bytes
87ec298
 
 
 
 
48bed5f
87ec298
 
 
 
 
 
 
48bed5f
87ec298
 
 
 
 
48bed5f
d6a1df9
48bed5f
87ec298
 
 
 
 
 
 
 
 
d6a1df9
 
87ec298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a1df9
 
 
 
 
87ec298
 
 
 
d6a1df9
87ec298
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- nyu-mll/glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: glue
      type: glue
      args: cola
    metrics:
    - type: matthews_correlation
      value: 0.541356878970505
      name: Matthews Correlation
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-cola

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7470
- Matthews Correlation: 0.5414

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5237        | 1.0   | 535  | 0.5327          | 0.4248               |
| 0.347         | 2.0   | 1070 | 0.5105          | 0.5239               |
| 0.2344        | 3.0   | 1605 | 0.6639          | 0.5224               |
| 0.1672        | 4.0   | 2140 | 0.7470          | 0.5414               |
| 0.1228        | 5.0   | 2675 | 0.8352          | 0.5377               |


### Framework versions

- Transformers 4.12.2
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3