File size: 2,006 Bytes
87ec298 48bed5f 87ec298 48bed5f 87ec298 48bed5f d6a1df9 48bed5f 87ec298 d6a1df9 87ec298 d6a1df9 87ec298 d6a1df9 87ec298 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- nyu-mll/glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: glue
type: glue
args: cola
metrics:
- type: matthews_correlation
value: 0.541356878970505
name: Matthews Correlation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7470
- Matthews Correlation: 0.5414
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5237 | 1.0 | 535 | 0.5327 | 0.4248 |
| 0.347 | 2.0 | 1070 | 0.5105 | 0.5239 |
| 0.2344 | 3.0 | 1605 | 0.6639 | 0.5224 |
| 0.1672 | 4.0 | 2140 | 0.7470 | 0.5414 |
| 0.1228 | 5.0 | 2675 | 0.8352 | 0.5377 |
### Framework versions
- Transformers 4.12.2
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|