File size: 2,989 Bytes
534fcb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5dc68a
 
e7995a8
 
e5dc68a
e7995a8
 
e5dc68a
adb7d34
 
 
 
 
 
 
 
e5dc68a
adb7d34
 
e5dc68a
adb7d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5dc68a
adb7d34
 
 
 
e5dc68a
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
base_model: llm-jp/llm-jp-3-13b
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
language:
- ja
datasets:
- weblab-GENIAC/aya-ja-evol-instruct-calm3-dpo-masked
widget:
- text: 生成AIについて説明して下さい。
---

# llm-jp-3-13b_lora_20241130

- **Developed by:** JunichiroMorita
- **License:** CC-BY-NC-SA
- **Finetuned from model :** llm-jp/llm-jp-3-13b

# Usage

```python
!pip install unsloth
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install -U torch
!pip install -U peft
```

```python
from unsloth import FastLanguageModel
from peft import PeftModel
import torch
import json
from tqdm import tqdm
import re

model_id = "llm-jp/llm-jp-3-13b"
adapter_id = f"JunichiroMorita/llm-jp-3-13b-it_lora_20241216"

HF_TOKEN = 'your_hugging_face_token'

dtype = None
load_in_4bit = True

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_id,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
    trust_remote_code=True,
)

model = PeftModel.from_pretrained(model, adapter_id, token=HF_TOKEN)

datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

FastLanguageModel.for_inference(model)

results = []
for dt in tqdm(datasets):
  input = dt["input"]

  prompt = f"""### 指示\n{input}\n\n### 回答\n"""

  inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

  outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答\n')[-1]

  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

with open(f'./llm-jp-3-13b-it_lora_20241216_output.jsonl', 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')
```

# Data

## LoRA
- [llmのための日本語インストラクションデータ (CC-BY-NC-SA)](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)\[1]

\[1]:関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024)

## DPO
- [aya-ja-evol-instruct-calm3-dpo-masked (Apache-2.0)](https://huggingface.co/datasets/weblab-GENIAC/aya-ja-evol-instruct-calm3-dpo-masked)