--- base_model: Llama-Mamba-3.1-8B-teacher-Llama-3.1-70B-Instruct-kl1.0-ce0.0 tags: - alignment-handbook - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized - HuggingFaceH4/orca_dpo_pairs - JunxiongWang/llama3-ultrafeedback-armorm model-index: - name: Llama-Mamba-3.1-8B-teacher-Llama-3.1-70B-Instruct-kl1.0-ce0.0-dpo-short results: [] --- [Visualize in Weights & Biases](https://wandb.ai/osieosie/huggingface/runs/va8s5gk4) # Llama-Mamba-3.1-8B-teacher-Llama-3.1-70B-Instruct-kl1.0-ce0.0-dpo-short This model is a fine-tuned version of [Llama-Mamba-3.1-8B-teacher-Llama-3.1-70B-Instruct-kl1.0-ce0.0](https://huggingface.co/Llama-Mamba-3.1-8B-teacher-Llama-3.1-70B-Instruct-kl1.0-ce0.0) on the HuggingFaceH4/ultrafeedback_binarized, the HuggingFaceH4/orca_dpo_pairs and the JunxiongWang/llama3-ultrafeedback-armorm datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.43.1 - Pytorch 2.1.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1