File size: 1,265 Bytes
b05027c 1ea2a9e b05027c 3ec791d 1ac3d5a 3ec791d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
library_name: dust3r
tags:
- image-to-3d
- model_hub_mixin
- pytorch_model_hub_mixin
license: cc-by-nc-sa-4.0
---
## MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion
<video controls>
<source src="https://monst3r-project.github.io/files/teaser_vid_v2_lowres.mp4" type="video/mp4">
Your browser does not support the video tag.
</video>
```bibtex
@article{zhang2024monst3r,
author = {Zhang, Junyi and Herrmann, Charles and Hur, Junhwa and Jampani, Varun and Darrell, Trevor and Cole, Forrester and Sun, Deqing and Yang, Ming-Hsuan},
title = {MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion},
journal = {arXiv preprint arxiv:2410.03825},
year = {2024}
}
```
# Model info
- GitHub page: https://github.com/junyi42/monst3r
- Project page: https://monst3r-project.github.io/
- Paper: https://arxiv.org/abs/2410.03825
# How to use
First, [install monst3r](https://github.com/junyi42/monst3r).
To load the model:
```python
from dust3r.model import AsymmetricCroCo3DStereo
import torch
model = AsymmetricCroCo3DStereo.from_pretrained("Junyi42/MonST3R_PO-TA-S-W_ViTLarge_BaseDecoder_512_dpt")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device) |