Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +10 -10
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -2.
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.71 +/- 0.62
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dad377266740584728f62939077f598a1342cade7bd396f9f8f7a22b531ceecd
|
3 |
+
size 108061
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -24,7 +24,7 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,7 +56,7 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f238048a0e0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f238047b940>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1689853149209632093,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8K/gPrTSBT1joBA/8K/gPrTSBT1joBA/8K/gPrTSBT1joBA/8K/gPrTSBT1joBA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkBURv50yH79Ww5K/LiY3P8eYxb9O5dK/wre/PztUKr+dpoS/OKjqvv73MT8VahW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADwr+A+tNIFPWOgED8Wn1i7++llO8dq97vwr+A+tNIFPWOgED8Wn1i7++llO8dq97vwr+A+tNIFPWOgED8Wn1i7++llO8dq97vwr+A+tNIFPWOgED8Wn1i7++llO8dq97uUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.4388423 0.03267165 0.5649473 ]\n [0.4388423 0.03267165 0.5649473 ]\n [0.4388423 0.03267165 0.5649473 ]\n [0.4388423 0.03267165 0.5649473 ]]",
|
38 |
+
"desired_goal": "[[-0.56673527 -0.62186605 -1.1465862 ]\n [ 0.7154263 -1.5437249 -1.6476228 ]\n [ 1.4977953 -0.66534775 -1.0363346 ]\n [-0.45831466 0.6951903 -0.58364993]]",
|
39 |
+
"observation": "[[ 0.4388423 0.03267165 0.5649473 -0.00330538 0.00350821 -0.00755057]\n [ 0.4388423 0.03267165 0.5649473 -0.00330538 0.00350821 -0.00755057]\n [ 0.4388423 0.03267165 0.5649473 -0.00330538 0.00350821 -0.00755057]\n [ 0.4388423 0.03267165 0.5649473 -0.00330538 0.00350821 -0.00755057]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlSz+vVTuGL6R6Y4+uyO9PeTOVL2kv8k9qS+YO/jtij3TEwE93862vXYpgT16+I8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.12410847 -0.14934665 0.27912572]\n [ 0.09235331 -0.05195512 0.09851006]\n [ 0.00464435 0.0678367 0.03151305]\n [-0.08926176 0.06306736 0.2811926 ]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0NVW7C87C8CUhpRSlIwBbJRLMowBdJRHQKUwyGvfTCt1fZQoaAZoCWgPQwhrgxPRr40DwJSGlFKUaBVLMmgWR0ClMGz7di2EdX2UKGgGaAloD0MIpp2ayw1mB8CUhpRSlGgVSzJoFkdApTAUH2RJVnV9lChoBmgJaA9DCEXxKmubIgjAlIaUUpRoFUsyaBZHQKUvuZlWfbt1fZQoaAZoCWgPQwhPAptz8EwDwJSGlFKUaBVLMmgWR0ClMj9BBzFNdX2UKGgGaAloD0MIh1ClZg9UBMCUhpRSlGgVSzJoFkdApTHkNe+mFnV9lChoBmgJaA9DCOQSRx6I7AXAlIaUUpRoFUsyaBZHQKUxi4Cp3ot1fZQoaAZoCWgPQwgVPIVcqUcPwJSGlFKUaBVLMmgWR0ClMTE2xY7rdX2UKGgGaAloD0MIBrmLMEV5AcCUhpRSlGgVSzJoFkdApTPppJwsG3V9lChoBmgJaA9DCKBU+3Q8hgLAlIaUUpRoFUsyaBZHQKUzj5mAbyZ1fZQoaAZoCWgPQwgn2H+dm7YUwJSGlFKUaBVLMmgWR0ClMzbRnezldX2UKGgGaAloD0MIiGh0B7GzA8CUhpRSlGgVSzJoFkdApTLcbvPTonV9lChoBmgJaA9DCPsgy4KJ/wPAlIaUUpRoFUsyaBZHQKU1EpiI+GJ1fZQoaAZoCWgPQwjwUBToE7kKwJSGlFKUaBVLMmgWR0ClNLaZpi7TdX2UKGgGaAloD0MIkpT0MLRaAsCUhpRSlGgVSzJoFkdApTRdS4vvjXV9lChoBmgJaA9DCPhtiPGatwvAlIaUUpRoFUsyaBZHQKU0AkOZssR1fZQoaAZoCWgPQwhGe7yQDq8LwJSGlFKUaBVLMmgWR0ClNfZIH1OCdX2UKGgGaAloD0MIKgMHtHTlBsCUhpRSlGgVSzJoFkdApTWaV6eGwnV9lChoBmgJaA9DCGxblNkg8wPAlIaUUpRoFUsyaBZHQKU1QPwNLDh1fZQoaAZoCWgPQwjt8NdkjRoJwJSGlFKUaBVLMmgWR0ClNOYTCcgAdX2UKGgGaAloD0MIhuelYmMeBcCUhpRSlGgVSzJoFkdApTbV6HCXQnV9lChoBmgJaA9DCP/PYb68AAvAlIaUUpRoFUsyaBZHQKU2egTRIBl1fZQoaAZoCWgPQwhHqu/8ouQHwJSGlFKUaBVLMmgWR0ClNiCnHeabdX2UKGgGaAloD0MIYtnMIakVEcCUhpRSlGgVSzJoFkdApTXFuejEenV9lChoBmgJaA9DCEEsmzkkRRDAlIaUUpRoFUsyaBZHQKU3ujRlYlp1fZQoaAZoCWgPQwj7rZ0oCekFwJSGlFKUaBVLMmgWR0ClN14xUNrkdX2UKGgGaAloD0MIeVxUi4iCCcCUhpRSlGgVSzJoFkdApTcEySFGonV9lChoBmgJaA9DCOF9VS5UXgXAlIaUUpRoFUsyaBZHQKU2qbkwN9Z1fZQoaAZoCWgPQwjKwWwCDMsDwJSGlFKUaBVLMmgWR0ClOKk+otL+dX2UKGgGaAloD0MIXmkZqfdUBsCUhpRSlGgVSzJoFkdApThNcQiA2HV9lChoBmgJaA9DCOv+sRAdogPAlIaUUpRoFUsyaBZHQKU39HLA57x1fZQoaAZoCWgPQwj8x0J0CDwLwJSGlFKUaBVLMmgWR0ClN5mVJL/TdX2UKGgGaAloD0MIrrzkf/JXAcCUhpRSlGgVSzJoFkdApTmG0LMLW3V9lChoBmgJaA9DCBVzEHS0av6/lIaUUpRoFUsyaBZHQKU5KubqhUR1fZQoaAZoCWgPQwjICKhwBMkQwJSGlFKUaBVLMmgWR0ClONGdqcmTdX2UKGgGaAloD0MIk3GMZI/QCsCUhpRSlGgVSzJoFkdApTh2rjo6jnV9lChoBmgJaA9DCNZSQNr/oAjAlIaUUpRoFUsyaBZHQKU6dbg0j1R1fZQoaAZoCWgPQwitNZTai4gFwJSGlFKUaBVLMmgWR0ClOhoMKCxvdX2UKGgGaAloD0MI+n/VkSNd97+UhpRSlGgVSzJoFkdApTnBLytmtnV9lChoBmgJaA9DCFkV4Saj6g3AlIaUUpRoFUsyaBZHQKU5ZmAbyYp1fZQoaAZoCWgPQwhYU1kUdnEHwJSGlFKUaBVLMmgWR0ClO1tQbdaddX2UKGgGaAloD0MIHt/eNehLB8CUhpRSlGgVSzJoFkdApTr/YjB2wHV9lChoBmgJaA9DCEFF1a90vg3AlIaUUpRoFUsyaBZHQKU6pkvK2a51fZQoaAZoCWgPQwiwWMNF7ukLwJSGlFKUaBVLMmgWR0ClOkts3yZsdX2UKGgGaAloD0MI2IFzRpSWBcCUhpRSlGgVSzJoFkdApTw5iG34K3V9lChoBmgJaA9DCAeaz7nblQXAlIaUUpRoFUsyaBZHQKU73cwg1WN1fZQoaAZoCWgPQwgWS5F8JbAMwJSGlFKUaBVLMmgWR0ClO4Rsl9jPdX2UKGgGaAloD0MIOdGuQsrPCcCUhpRSlGgVSzJoFkdApTspm03OwHV9lChoBmgJaA9DCGjon+BixQTAlIaUUpRoFUsyaBZHQKU9FdCVryl1fZQoaAZoCWgPQwgyk6gXfJoEwJSGlFKUaBVLMmgWR0ClPLncclw+dX2UKGgGaAloD0MIgVmhSPcTCMCUhpRSlGgVSzJoFkdApTxgg1WKdnV9lChoBmgJaA9DCB+/t+nP/gjAlIaUUpRoFUsyaBZHQKU8BYoRZlp1fZQoaAZoCWgPQwiOeR1xyOYPwJSGlFKUaBVLMmgWR0ClPgAckt2+dX2UKGgGaAloD0MIzvv/OGGCAcCUhpRSlGgVSzJoFkdApT2kPxx1gnV9lChoBmgJaA9DCGmOrPwyOAPAlIaUUpRoFUsyaBZHQKU9SwMYuTR1fZQoaAZoCWgPQwjZfFwbKmYGwJSGlFKUaBVLMmgWR0ClPPArxy4ndX2UKGgGaAloD0MIQZ3y6EZYAsCUhpRSlGgVSzJoFkdApT7c9yLhrHV9lChoBmgJaA9DCPqZet0isA3AlIaUUpRoFUsyaBZHQKU+gQRPGhp1fZQoaAZoCWgPQwgn+nyUEbcJwJSGlFKUaBVLMmgWR0ClPietr9EUdX2UKGgGaAloD0MIZvm6DP8JCcCUhpRSlGgVSzJoFkdApT3Mona37XV9lChoBmgJaA9DCG0eh8H8FQTAlIaUUpRoFUsyaBZHQKU/uvFm4Al1fZQoaAZoCWgPQwg3xeOiWsQFwJSGlFKUaBVLMmgWR0ClP1/HPu5SdX2UKGgGaAloD0MIjJ/GvfntCMCUhpRSlGgVSzJoFkdApT8HeizsyHV9lChoBmgJaA9DCEYiNIKNywPAlIaUUpRoFUsyaBZHQKU+rNgSey11fZQoaAZoCWgPQwhcHQBxV2/+v5SGlFKUaBVLMmgWR0ClQJx+z+m4dX2UKGgGaAloD0MIV89J7xu/C8CUhpRSlGgVSzJoFkdApUBAwyqMnHV9lChoBmgJaA9DCE0QdR+AVATAlIaUUpRoFUsyaBZHQKU/53W4EwF1fZQoaAZoCWgPQwhzvALRk7IKwJSGlFKUaBVLMmgWR0ClP4xqO939dX2UKGgGaAloD0MI8DUEx2WcAsCUhpRSlGgVSzJoFkdApUGYk3S8anV9lChoBmgJaA9DCMdjBirjnwXAlIaUUpRoFUsyaBZHQKVBPR5TqB51fZQoaAZoCWgPQwi8JM6KqGkCwJSGlFKUaBVLMmgWR0ClQOPMSsbOdX2UKGgGaAloD0MIaVIKur1EC8CUhpRSlGgVSzJoFkdApUCJHoX9BXV9lChoBmgJaA9DCL3EWKZfwgnAlIaUUpRoFUsyaBZHQKVCca3qiXZ1fZQoaAZoCWgPQwjV6NUApQECwJSGlFKUaBVLMmgWR0ClQhXCbc46dX2UKGgGaAloD0MIUaOQZFaPDsCUhpRSlGgVSzJoFkdApUG8V8CxNnV9lChoBmgJaA9DCKtCA7FsRgLAlIaUUpRoFUsyaBZHQKVBYYoAn2J1fZQoaAZoCWgPQwh1lIPZBPgFwJSGlFKUaBVLMmgWR0ClQ0pyp71JdX2UKGgGaAloD0MIPzifOlZJBMCUhpRSlGgVSzJoFkdApULufkFOf3V9lChoBmgJaA9DCBcNGY9SaQXAlIaUUpRoFUsyaBZHQKVClUBnzxx1fZQoaAZoCWgPQwjbheY6jRQNwJSGlFKUaBVLMmgWR0ClQjo371qWdX2UKGgGaAloD0MIzlSIR+Ll97+UhpRSlGgVSzJoFkdApUQs/bCaZ3V9lChoBmgJaA9DCH47iQj/ggbAlIaUUpRoFUsyaBZHQKVD0QpWmxd1fZQoaAZoCWgPQwjptdlYiXkAwJSGlFKUaBVLMmgWR0ClQ3esgdOqdX2UKGgGaAloD0MI3JvfMNHABsCUhpRSlGgVSzJoFkdApUMcqvvBrXV9lChoBmgJaA9DCO1mRj8azgfAlIaUUpRoFUsyaBZHQKVFLW7OE/V1fZQoaAZoCWgPQwg/UkSGVTwIwJSGlFKUaBVLMmgWR0ClRNGY0EX+dX2UKGgGaAloD0MIUI2XbhIjDsCUhpRSlGgVSzJoFkdApUR4UnG83HV9lChoBmgJaA9DCPj8MEJ4NADAlIaUUpRoFUsyaBZHQKVEHlZowmF1fZQoaAZoCWgPQwire2Rz1dwLwJSGlFKUaBVLMmgWR0ClRhSL61stdX2UKGgGaAloD0MIKld4l4uYBMCUhpRSlGgVSzJoFkdApUW4mNR3vHV9lChoBmgJaA9DCD52Fygp8Pu/lIaUUpRoFUsyaBZHQKVFX7WuoxZ1fZQoaAZoCWgPQwgbnfNTHAcHwJSGlFKUaBVLMmgWR0ClRQSmygPFdX2UKGgGaAloD0MI36Y/+5ECAMCUhpRSlGgVSzJoFkdApUbxd+ocaXV9lChoBmgJaA9DCK1p3nGKzgTAlIaUUpRoFUsyaBZHQKVGlY287IV1fZQoaAZoCWgPQwjAIr9+iA0DwJSGlFKUaBVLMmgWR0ClRjw+UyHmdX2UKGgGaAloD0MIRpp4B3gyCcCUhpRSlGgVSzJoFkdApUXhO8Cgb3V9lChoBmgJaA9DCN+nqtBA7AHAlIaUUpRoFUsyaBZHQKVHy2wV0tB1fZQoaAZoCWgPQwiCVfXyO43/v5SGlFKUaBVLMmgWR0ClR29qUNaydX2UKGgGaAloD0MILLmKxW9qBMCUhpRSlGgVSzJoFkdApUcWAAhjfHV9lChoBmgJaA9DCELuIkxRrgLAlIaUUpRoFUsyaBZHQKVGuvmHP/t1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11a9901856a5651bb48e1098045c655a83271b6c0bd7299309746479629c866a
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:980815c3fbbfc59f5bd06967724e894fbe9e36f8f09c2533660320c513856334
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c6000772dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c6000767500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689846880047569613, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAlufjPgorMDscfCY/lufjPgorMDscfCY/lufjPgorMDscfCY/lufjPgorMDscfCY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOEfcP8kg0b+QKMC/7HGXv7Udqz99mzE/PyYhP6cJKD93FVg//ep1PnU+zz/MLpQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACW5+M+CiswOxx8Jj9iB4y7XbkBOCtmmzyW5+M+CiswOxx8Jj9iB4y7XbkBOCtmmzyW5+M+CiswOxx8Jj9iB4y7XbkBOCtmmzyW5+M+CiswOxx8Jj9iB4y7XbkBOCtmmzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.44512624 0.00268811 0.65033126]\n [0.44512624 0.00268811 0.65033126]\n [0.44512624 0.00268811 0.65033126]\n [0.44512624 0.00268811 0.65033126]]", "desired_goal": "[[ 1.7209234 -1.633813 -1.5012379 ]\n [-1.1831641 1.3368441 0.6937788 ]\n [ 0.62948984 0.6563973 0.8440775 ]\n [ 0.24015422 1.6190935 1.1576781 ]]", "observation": "[[ 4.4512624e-01 2.6881122e-03 6.5033126e-01 -4.2733410e-03\n 3.0928630e-05 1.8969616e-02]\n [ 4.4512624e-01 2.6881122e-03 6.5033126e-01 -4.2733410e-03\n 3.0928630e-05 1.8969616e-02]\n [ 4.4512624e-01 2.6881122e-03 6.5033126e-01 -4.2733410e-03\n 3.0928630e-05 1.8969616e-02]\n [ 4.4512624e-01 2.6881122e-03 6.5033126e-01 -4.2733410e-03\n 3.0928630e-05 1.8969616e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPincPHYSST2isAE+I2JsPa0a5bxQpko+EL50PXDLiT1Pqpg+7qxgPaUMDL7xGYk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02687513 0.04908987 0.12665036]\n [ 0.05771078 -0.02796682 0.19790006]\n [ 0.05975157 0.06728256 0.29817435]\n [ 0.05485242 -0.13676699 0.06694401]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi/okd9jkAsCUhpRSlIwBbJRLMowBdJRHQKVRKOaOPvN1fZQoaAZoCWgPQwgY0At3LmwDwJSGlFKUaBVLMmgWR0ClUOn9vS+hdX2UKGgGaAloD0MIvTrHgOy1A8CUhpRSlGgVSzJoFkdApVCrGFSKnHV9lChoBmgJaA9DCNYApaFGofm/lIaUUpRoFUsyaBZHQKVQa9bor4F1fZQoaAZoCWgPQwhr09heC3r5v5SGlFKUaBVLMmgWR0ClUmZ/LDAKdX2UKGgGaAloD0MIJ2n+mNbm/b+UhpRSlGgVSzJoFkdApVIn13+uNnV9lChoBmgJaA9DCCB7vfvjvQnAlIaUUpRoFUsyaBZHQKVR6TVUdaN1fZQoaAZoCWgPQwh9PPTdrUwEwJSGlFKUaBVLMmgWR0ClUao8yN4rdX2UKGgGaAloD0MIFjCBW3fz9r+UhpRSlGgVSzJoFkdApVPLz5GjK3V9lChoBmgJaA9DCEEpWrkX2AHAlIaUUpRoFUsyaBZHQKVTjTodMkB1fZQoaAZoCWgPQwgXSbvRx7z4v5SGlFKUaBVLMmgWR0ClU07QLNOedX2UKGgGaAloD0MIqdxELc2NAMCUhpRSlGgVSzJoFkdApVMQEnssx3V9lChoBmgJaA9DCEc7bvjddAXAlIaUUpRoFUsyaBZHQKVVTBInSfF1fZQoaAZoCWgPQwjVCP1MvQ4HwJSGlFKUaBVLMmgWR0ClVQ2dd3SsdX2UKGgGaAloD0MIiBBXzt65AsCUhpRSlGgVSzJoFkdApVTPgDRtxnV9lChoBmgJaA9DCGqkpfJ2xAjAlIaUUpRoFUsyaBZHQKVUkRtgrpd1fZQoaAZoCWgPQwg4E9OFWN0EwJSGlFKUaBVLMmgWR0ClVsg75mAcdX2UKGgGaAloD0MI6x7ZXDVvBsCUhpRSlGgVSzJoFkdApVaJy8zyjHV9lChoBmgJaA9DCC2T4Xg+YwHAlIaUUpRoFUsyaBZHQKVWSz0HyEt1fZQoaAZoCWgPQwgEOpM2VTf3v5SGlFKUaBVLMmgWR0ClVgwg9vCNdX2UKGgGaAloD0MI14aKcf6mBMCUhpRSlGgVSzJoFkdApVe+QhfShXV9lChoBmgJaA9DCNMW1/hMtv6/lIaUUpRoFUsyaBZHQKVXfydWhh91fZQoaAZoCWgPQwhEFmniHQACwJSGlFKUaBVLMmgWR0ClV0AVO9FndX2UKGgGaAloD0MIprbUQV5PCcCUhpRSlGgVSzJoFkdApVcAmois4nV9lChoBmgJaA9DCDjb3JiekAXAlIaUUpRoFUsyaBZHQKVYqWZ7Xxx1fZQoaAZoCWgPQwh3u16aIgD4v5SGlFKUaBVLMmgWR0ClWGpjtoi+dX2UKGgGaAloD0MIk+ANaVSADMCUhpRSlGgVSzJoFkdApVgrbYbsGHV9lChoBmgJaA9DCCaOPBBZBAPAlIaUUpRoFUsyaBZHQKVX6/SH/Ll1fZQoaAZoCWgPQwgDtoMR+0T7v5SGlFKUaBVLMmgWR0ClWY+CTUy6dX2UKGgGaAloD0MIN43ttaC3BsCUhpRSlGgVSzJoFkdApVlQatLcsXV9lChoBmgJaA9DCEXaxp+orPS/lIaUUpRoFUsyaBZHQKVZEXUH6dl1fZQoaAZoCWgPQwiIK2fvjHb3v5SGlFKUaBVLMmgWR0ClWNISL61tdX2UKGgGaAloD0MIgqj7AKQ2+L+UhpRSlGgVSzJoFkdApVp7NliBoXV9lChoBmgJaA9DCFzGTQ00HwHAlIaUUpRoFUsyaBZHQKVaPAzpHI91fZQoaAZoCWgPQwgj+UogJXb7v5SGlFKUaBVLMmgWR0ClWf0CzTnadX2UKGgGaAloD0MIKbFre7ul+L+UhpRSlGgVSzJoFkdApVm9enhsInV9lChoBmgJaA9DCKxzDMhebwHAlIaUUpRoFUsyaBZHQKVbVhw2l2x1fZQoaAZoCWgPQwjzzMth9x0HwJSGlFKUaBVLMmgWR0ClWxb0voNedX2UKGgGaAloD0MI11BqL6Lt/7+UhpRSlGgVSzJoFkdApVrX6hxo7HV9lChoBmgJaA9DCFM8LqpFBBDAlIaUUpRoFUsyaBZHQKVamHRkVet1fZQoaAZoCWgPQwgaMh6lEh4GwJSGlFKUaBVLMmgWR0ClXDOTibUgdX2UKGgGaAloD0MI8iVUcHhBAMCUhpRSlGgVSzJoFkdApVv1LYf4h3V9lChoBmgJaA9DCLmJWppbgQLAlIaUUpRoFUsyaBZHQKVbtxlxwQ11fZQoaAZoCWgPQwjMQGX8+8wHwJSGlFKUaBVLMmgWR0ClW3gOrhitdX2UKGgGaAloD0MI/ffgtUubAMCUhpRSlGgVSzJoFkdApV0YE2YOUnV9lChoBmgJaA9DCGCwG7YtSgHAlIaUUpRoFUsyaBZHQKVc2ReTmnx1fZQoaAZoCWgPQwggQfFjzF0NwJSGlFKUaBVLMmgWR0ClXJofSx7idX2UKGgGaAloD0MI8+fbgqXaBcCUhpRSlGgVSzJoFkdApVxawD/2kHV9lChoBmgJaA9DCFH0wMdgRQPAlIaUUpRoFUsyaBZHQKVeC7p3X7N1fZQoaAZoCWgPQwhlNzP60bAGwJSGlFKUaBVLMmgWR0ClXcz3AVO9dX2UKGgGaAloD0MIS6/NxkrM+r+UhpRSlGgVSzJoFkdApV2N/MGHHnV9lChoBmgJaA9DCEVlw5rKogTAlIaUUpRoFUsyaBZHQKVdTpQDV6N1fZQoaAZoCWgPQwiJsyJqom8GwJSGlFKUaBVLMmgWR0ClXvh73PAwdX2UKGgGaAloD0MI0jWTb7b5BMCUhpRSlGgVSzJoFkdApV65X+2mYXV9lChoBmgJaA9DCNvBiH0CKPe/lIaUUpRoFUsyaBZHQKVeeorFwUB1fZQoaAZoCWgPQwjbh7zl6mcNwJSGlFKUaBVLMmgWR0ClXjsKsuFpdX2UKGgGaAloD0MIjbgANEqXDsCUhpRSlGgVSzJoFkdApV/VTm4iHXV9lChoBmgJaA9DCLPw9bUuBRHAlIaUUpRoFUsyaBZHQKVflhbW3Bp1fZQoaAZoCWgPQwiwy/CfbqAJwJSGlFKUaBVLMmgWR0ClX1co6S1WdX2UKGgGaAloD0MIKes3E9NF/7+UhpRSlGgVSzJoFkdApV8XqPfbbnV9lChoBmgJaA9DCJIiMqzizQPAlIaUUpRoFUsyaBZHQKVgvaEBbOh1fZQoaAZoCWgPQwiKk/sdigIEwJSGlFKUaBVLMmgWR0ClYH6A4GUwdX2UKGgGaAloD0MIEodsIF3sBsCUhpRSlGgVSzJoFkdApWA/qoqCpXV9lChoBmgJaA9DCDVB1H0A0gXAlIaUUpRoFUsyaBZHQKVgADM/yG11fZQoaAZoCWgPQwgdrWpJRzn6v5SGlFKUaBVLMmgWR0ClYZ19nbqRdX2UKGgGaAloD0MIXMr5Yu8FAcCUhpRSlGgVSzJoFkdApWFeY0EX+HV9lChoBmgJaA9DCPD9DdqrbwLAlIaUUpRoFUsyaBZHQKVhH4eLehx1fZQoaAZoCWgPQwgZPbfQlUgEwJSGlFKUaBVLMmgWR0ClYOBJRO1wdX2UKGgGaAloD0MIfjhIiPJF/L+UhpRSlGgVSzJoFkdApWJ/L5h0AHV9lChoBmgJaA9DCLjJqDKM2wHAlIaUUpRoFUsyaBZHQKViP/4qPOp1fZQoaAZoCWgPQwji6gCIu3oJwJSGlFKUaBVLMmgWR0ClYgDcEeQudX2UKGgGaAloD0MIpMFtbeF5AMCUhpRSlGgVSzJoFkdApWHBkCmuT3V9lChoBmgJaA9DCEzhQbPrXgDAlIaUUpRoFUsyaBZHQKVjX0xubZx1fZQoaAZoCWgPQwiw6NZrepD7v5SGlFKUaBVLMmgWR0ClYyA3tKI0dX2UKGgGaAloD0MIjE0rhUBOBMCUhpRSlGgVSzJoFkdApWLhL7Gec3V9lChoBmgJaA9DCIE9JlKazQ7AlIaUUpRoFUsyaBZHQKVioahHskZ1fZQoaAZoCWgPQwjGpL+XwqMLwJSGlFKUaBVLMmgWR0ClZDvsqrimdX2UKGgGaAloD0MIFCNL5liOEMCUhpRSlGgVSzJoFkdApWP8se4kNXV9lChoBmgJaA9DCOl942vP7APAlIaUUpRoFUsyaBZHQKVjvaxoqTd1fZQoaAZoCWgPQwgRNdHno6wCwJSGlFKUaBVLMmgWR0ClY34ku6ErdX2UKGgGaAloD0MIUdmwprLIAMCUhpRSlGgVSzJoFkdApWUd21UlzHV9lChoBmgJaA9DCFEWvr7WJf2/lIaUUpRoFUsyaBZHQKVk3sniNsF1fZQoaAZoCWgPQwgV4SajyvD7v5SGlFKUaBVLMmgWR0ClZJ/CQ9zPdX2UKGgGaAloD0MIMJ+sGK4OEMCUhpRSlGgVSzJoFkdApWRgTdtVJnV9lChoBmgJaA9DCKQbYVERpxDAlIaUUpRoFUsyaBZHQKVl/R64Uex1fZQoaAZoCWgPQwiZgF8jSXACwJSGlFKUaBVLMmgWR0ClZb39BKL9dX2UKGgGaAloD0MIyXN9Hw5yA8CUhpRSlGgVSzJoFkdApWV+9WZJCnV9lChoBmgJaA9DCC4gtB6+jADAlIaUUpRoFUsyaBZHQKVlP6eoUBZ1fZQoaAZoCWgPQwjZzvdT46UBwJSGlFKUaBVLMmgWR0ClZuRC6YmcdX2UKGgGaAloD0MI0ZMyqaENBMCUhpRSlGgVSzJoFkdApWalKwpvxnV9lChoBmgJaA9DCNZ0PdF1gQPAlIaUUpRoFUsyaBZHQKVmZiLEUCd1fZQoaAZoCWgPQwhrf2d79KYFwJSGlFKUaBVLMmgWR0ClZiauW8h+dX2UKGgGaAloD0MIOC140VeQ/L+UhpRSlGgVSzJoFkdApWfGxW1c+3V9lChoBmgJaA9DCCNOJ9nqMgTAlIaUUpRoFUsyaBZHQKVnh6eoUBZ1fZQoaAZoCWgPQwgzMshdhGn5v5SGlFKUaBVLMmgWR0ClZ0iqZML4dX2UKGgGaAloD0MIyhXe5SK+CMCUhpRSlGgVSzJoFkdApWcJQvYe1nV9lChoBmgJaA9DCPewFwrYrgPAlIaUUpRoFUsyaBZHQKVoqImgJ1J1fZQoaAZoCWgPQwiOdXEbDWAQwJSGlFKUaBVLMmgWR0ClaGlMRHwxdX2UKGgGaAloD0MISIld29vNAcCUhpRSlGgVSzJoFkdApWgqQT238XV9lChoBmgJaA9DCMQhG0gXW/a/lIaUUpRoFUsyaBZHQKVn6qMFUyZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f238048a0e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f238047b940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689853149209632093, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8K/gPrTSBT1joBA/8K/gPrTSBT1joBA/8K/gPrTSBT1joBA/8K/gPrTSBT1joBA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkBURv50yH79Ww5K/LiY3P8eYxb9O5dK/wre/PztUKr+dpoS/OKjqvv73MT8VahW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADwr+A+tNIFPWOgED8Wn1i7++llO8dq97vwr+A+tNIFPWOgED8Wn1i7++llO8dq97vwr+A+tNIFPWOgED8Wn1i7++llO8dq97vwr+A+tNIFPWOgED8Wn1i7++llO8dq97uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4388423 0.03267165 0.5649473 ]\n [0.4388423 0.03267165 0.5649473 ]\n [0.4388423 0.03267165 0.5649473 ]\n [0.4388423 0.03267165 0.5649473 ]]", "desired_goal": "[[-0.56673527 -0.62186605 -1.1465862 ]\n [ 0.7154263 -1.5437249 -1.6476228 ]\n [ 1.4977953 -0.66534775 -1.0363346 ]\n [-0.45831466 0.6951903 -0.58364993]]", "observation": "[[ 0.4388423 0.03267165 0.5649473 -0.00330538 0.00350821 -0.00755057]\n [ 0.4388423 0.03267165 0.5649473 -0.00330538 0.00350821 -0.00755057]\n [ 0.4388423 0.03267165 0.5649473 -0.00330538 0.00350821 -0.00755057]\n [ 0.4388423 0.03267165 0.5649473 -0.00330538 0.00350821 -0.00755057]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlSz+vVTuGL6R6Y4+uyO9PeTOVL2kv8k9qS+YO/jtij3TEwE93862vXYpgT16+I8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12410847 -0.14934665 0.27912572]\n [ 0.09235331 -0.05195512 0.09851006]\n [ 0.00464435 0.0678367 0.03151305]\n [-0.08926176 0.06306736 0.2811926 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0NVW7C87C8CUhpRSlIwBbJRLMowBdJRHQKUwyGvfTCt1fZQoaAZoCWgPQwhrgxPRr40DwJSGlFKUaBVLMmgWR0ClMGz7di2EdX2UKGgGaAloD0MIpp2ayw1mB8CUhpRSlGgVSzJoFkdApTAUH2RJVnV9lChoBmgJaA9DCEXxKmubIgjAlIaUUpRoFUsyaBZHQKUvuZlWfbt1fZQoaAZoCWgPQwhPAptz8EwDwJSGlFKUaBVLMmgWR0ClMj9BBzFNdX2UKGgGaAloD0MIh1ClZg9UBMCUhpRSlGgVSzJoFkdApTHkNe+mFnV9lChoBmgJaA9DCOQSRx6I7AXAlIaUUpRoFUsyaBZHQKUxi4Cp3ot1fZQoaAZoCWgPQwgVPIVcqUcPwJSGlFKUaBVLMmgWR0ClMTE2xY7rdX2UKGgGaAloD0MIBrmLMEV5AcCUhpRSlGgVSzJoFkdApTPppJwsG3V9lChoBmgJaA9DCKBU+3Q8hgLAlIaUUpRoFUsyaBZHQKUzj5mAbyZ1fZQoaAZoCWgPQwgn2H+dm7YUwJSGlFKUaBVLMmgWR0ClMzbRnezldX2UKGgGaAloD0MIiGh0B7GzA8CUhpRSlGgVSzJoFkdApTLcbvPTonV9lChoBmgJaA9DCPsgy4KJ/wPAlIaUUpRoFUsyaBZHQKU1EpiI+GJ1fZQoaAZoCWgPQwjwUBToE7kKwJSGlFKUaBVLMmgWR0ClNLaZpi7TdX2UKGgGaAloD0MIkpT0MLRaAsCUhpRSlGgVSzJoFkdApTRdS4vvjXV9lChoBmgJaA9DCPhtiPGatwvAlIaUUpRoFUsyaBZHQKU0AkOZssR1fZQoaAZoCWgPQwhGe7yQDq8LwJSGlFKUaBVLMmgWR0ClNfZIH1OCdX2UKGgGaAloD0MIKgMHtHTlBsCUhpRSlGgVSzJoFkdApTWaV6eGwnV9lChoBmgJaA9DCGxblNkg8wPAlIaUUpRoFUsyaBZHQKU1QPwNLDh1fZQoaAZoCWgPQwjt8NdkjRoJwJSGlFKUaBVLMmgWR0ClNOYTCcgAdX2UKGgGaAloD0MIhuelYmMeBcCUhpRSlGgVSzJoFkdApTbV6HCXQnV9lChoBmgJaA9DCP/PYb68AAvAlIaUUpRoFUsyaBZHQKU2egTRIBl1fZQoaAZoCWgPQwhHqu/8ouQHwJSGlFKUaBVLMmgWR0ClNiCnHeabdX2UKGgGaAloD0MIYtnMIakVEcCUhpRSlGgVSzJoFkdApTXFuejEenV9lChoBmgJaA9DCEEsmzkkRRDAlIaUUpRoFUsyaBZHQKU3ujRlYlp1fZQoaAZoCWgPQwj7rZ0oCekFwJSGlFKUaBVLMmgWR0ClN14xUNrkdX2UKGgGaAloD0MIeVxUi4iCCcCUhpRSlGgVSzJoFkdApTcEySFGonV9lChoBmgJaA9DCOF9VS5UXgXAlIaUUpRoFUsyaBZHQKU2qbkwN9Z1fZQoaAZoCWgPQwjKwWwCDMsDwJSGlFKUaBVLMmgWR0ClOKk+otL+dX2UKGgGaAloD0MIXmkZqfdUBsCUhpRSlGgVSzJoFkdApThNcQiA2HV9lChoBmgJaA9DCOv+sRAdogPAlIaUUpRoFUsyaBZHQKU39HLA57x1fZQoaAZoCWgPQwj8x0J0CDwLwJSGlFKUaBVLMmgWR0ClN5mVJL/TdX2UKGgGaAloD0MIrrzkf/JXAcCUhpRSlGgVSzJoFkdApTmG0LMLW3V9lChoBmgJaA9DCBVzEHS0av6/lIaUUpRoFUsyaBZHQKU5KubqhUR1fZQoaAZoCWgPQwjICKhwBMkQwJSGlFKUaBVLMmgWR0ClONGdqcmTdX2UKGgGaAloD0MIk3GMZI/QCsCUhpRSlGgVSzJoFkdApTh2rjo6jnV9lChoBmgJaA9DCNZSQNr/oAjAlIaUUpRoFUsyaBZHQKU6dbg0j1R1fZQoaAZoCWgPQwitNZTai4gFwJSGlFKUaBVLMmgWR0ClOhoMKCxvdX2UKGgGaAloD0MI+n/VkSNd97+UhpRSlGgVSzJoFkdApTnBLytmtnV9lChoBmgJaA9DCFkV4Saj6g3AlIaUUpRoFUsyaBZHQKU5ZmAbyYp1fZQoaAZoCWgPQwhYU1kUdnEHwJSGlFKUaBVLMmgWR0ClO1tQbdaddX2UKGgGaAloD0MIHt/eNehLB8CUhpRSlGgVSzJoFkdApTr/YjB2wHV9lChoBmgJaA9DCEFF1a90vg3AlIaUUpRoFUsyaBZHQKU6pkvK2a51fZQoaAZoCWgPQwiwWMNF7ukLwJSGlFKUaBVLMmgWR0ClOkts3yZsdX2UKGgGaAloD0MI2IFzRpSWBcCUhpRSlGgVSzJoFkdApTw5iG34K3V9lChoBmgJaA9DCAeaz7nblQXAlIaUUpRoFUsyaBZHQKU73cwg1WN1fZQoaAZoCWgPQwgWS5F8JbAMwJSGlFKUaBVLMmgWR0ClO4Rsl9jPdX2UKGgGaAloD0MIOdGuQsrPCcCUhpRSlGgVSzJoFkdApTspm03OwHV9lChoBmgJaA9DCGjon+BixQTAlIaUUpRoFUsyaBZHQKU9FdCVryl1fZQoaAZoCWgPQwgyk6gXfJoEwJSGlFKUaBVLMmgWR0ClPLncclw+dX2UKGgGaAloD0MIgVmhSPcTCMCUhpRSlGgVSzJoFkdApTxgg1WKdnV9lChoBmgJaA9DCB+/t+nP/gjAlIaUUpRoFUsyaBZHQKU8BYoRZlp1fZQoaAZoCWgPQwiOeR1xyOYPwJSGlFKUaBVLMmgWR0ClPgAckt2+dX2UKGgGaAloD0MIzvv/OGGCAcCUhpRSlGgVSzJoFkdApT2kPxx1gnV9lChoBmgJaA9DCGmOrPwyOAPAlIaUUpRoFUsyaBZHQKU9SwMYuTR1fZQoaAZoCWgPQwjZfFwbKmYGwJSGlFKUaBVLMmgWR0ClPPArxy4ndX2UKGgGaAloD0MIQZ3y6EZYAsCUhpRSlGgVSzJoFkdApT7c9yLhrHV9lChoBmgJaA9DCPqZet0isA3AlIaUUpRoFUsyaBZHQKU+gQRPGhp1fZQoaAZoCWgPQwgn+nyUEbcJwJSGlFKUaBVLMmgWR0ClPietr9EUdX2UKGgGaAloD0MIZvm6DP8JCcCUhpRSlGgVSzJoFkdApT3Mona37XV9lChoBmgJaA9DCG0eh8H8FQTAlIaUUpRoFUsyaBZHQKU/uvFm4Al1fZQoaAZoCWgPQwg3xeOiWsQFwJSGlFKUaBVLMmgWR0ClP1/HPu5SdX2UKGgGaAloD0MIjJ/GvfntCMCUhpRSlGgVSzJoFkdApT8HeizsyHV9lChoBmgJaA9DCEYiNIKNywPAlIaUUpRoFUsyaBZHQKU+rNgSey11fZQoaAZoCWgPQwhcHQBxV2/+v5SGlFKUaBVLMmgWR0ClQJx+z+m4dX2UKGgGaAloD0MIV89J7xu/C8CUhpRSlGgVSzJoFkdApUBAwyqMnHV9lChoBmgJaA9DCE0QdR+AVATAlIaUUpRoFUsyaBZHQKU/53W4EwF1fZQoaAZoCWgPQwhzvALRk7IKwJSGlFKUaBVLMmgWR0ClP4xqO939dX2UKGgGaAloD0MI8DUEx2WcAsCUhpRSlGgVSzJoFkdApUGYk3S8anV9lChoBmgJaA9DCMdjBirjnwXAlIaUUpRoFUsyaBZHQKVBPR5TqB51fZQoaAZoCWgPQwi8JM6KqGkCwJSGlFKUaBVLMmgWR0ClQOPMSsbOdX2UKGgGaAloD0MIaVIKur1EC8CUhpRSlGgVSzJoFkdApUCJHoX9BXV9lChoBmgJaA9DCL3EWKZfwgnAlIaUUpRoFUsyaBZHQKVCca3qiXZ1fZQoaAZoCWgPQwjV6NUApQECwJSGlFKUaBVLMmgWR0ClQhXCbc46dX2UKGgGaAloD0MIUaOQZFaPDsCUhpRSlGgVSzJoFkdApUG8V8CxNnV9lChoBmgJaA9DCKtCA7FsRgLAlIaUUpRoFUsyaBZHQKVBYYoAn2J1fZQoaAZoCWgPQwh1lIPZBPgFwJSGlFKUaBVLMmgWR0ClQ0pyp71JdX2UKGgGaAloD0MIPzifOlZJBMCUhpRSlGgVSzJoFkdApULufkFOf3V9lChoBmgJaA9DCBcNGY9SaQXAlIaUUpRoFUsyaBZHQKVClUBnzxx1fZQoaAZoCWgPQwjbheY6jRQNwJSGlFKUaBVLMmgWR0ClQjo371qWdX2UKGgGaAloD0MIzlSIR+Ll97+UhpRSlGgVSzJoFkdApUQs/bCaZ3V9lChoBmgJaA9DCH47iQj/ggbAlIaUUpRoFUsyaBZHQKVD0QpWmxd1fZQoaAZoCWgPQwjptdlYiXkAwJSGlFKUaBVLMmgWR0ClQ3esgdOqdX2UKGgGaAloD0MI3JvfMNHABsCUhpRSlGgVSzJoFkdApUMcqvvBrXV9lChoBmgJaA9DCO1mRj8azgfAlIaUUpRoFUsyaBZHQKVFLW7OE/V1fZQoaAZoCWgPQwg/UkSGVTwIwJSGlFKUaBVLMmgWR0ClRNGY0EX+dX2UKGgGaAloD0MIUI2XbhIjDsCUhpRSlGgVSzJoFkdApUR4UnG83HV9lChoBmgJaA9DCPj8MEJ4NADAlIaUUpRoFUsyaBZHQKVEHlZowmF1fZQoaAZoCWgPQwire2Rz1dwLwJSGlFKUaBVLMmgWR0ClRhSL61stdX2UKGgGaAloD0MIKld4l4uYBMCUhpRSlGgVSzJoFkdApUW4mNR3vHV9lChoBmgJaA9DCD52Fygp8Pu/lIaUUpRoFUsyaBZHQKVFX7WuoxZ1fZQoaAZoCWgPQwgbnfNTHAcHwJSGlFKUaBVLMmgWR0ClRQSmygPFdX2UKGgGaAloD0MI36Y/+5ECAMCUhpRSlGgVSzJoFkdApUbxd+ocaXV9lChoBmgJaA9DCK1p3nGKzgTAlIaUUpRoFUsyaBZHQKVGlY287IV1fZQoaAZoCWgPQwjAIr9+iA0DwJSGlFKUaBVLMmgWR0ClRjw+UyHmdX2UKGgGaAloD0MIRpp4B3gyCcCUhpRSlGgVSzJoFkdApUXhO8Cgb3V9lChoBmgJaA9DCN+nqtBA7AHAlIaUUpRoFUsyaBZHQKVHy2wV0tB1fZQoaAZoCWgPQwiCVfXyO43/v5SGlFKUaBVLMmgWR0ClR29qUNaydX2UKGgGaAloD0MILLmKxW9qBMCUhpRSlGgVSzJoFkdApUcWAAhjfHV9lChoBmgJaA9DCELuIkxRrgLAlIaUUpRoFUsyaBZHQKVGuvmHP/t1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -2.
|
|
|
1 |
+
{"mean_reward": -2.7093759265262634, "std_reward": 0.62126126392664, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-20T12:24:28.799638"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e33c7c5de7be4f00331c486ad99d11559f24d39cf510b2f841673293c027b3a
|
3 |
size 2387
|