Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +10 -10
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- a2c-PandaReachDense-v2/system_info.txt +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.57 +/- 1.84
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1dbacef2db5b162cf8c36ec4ff82d14d738d5cb87224ce23155c4ae12c0ba71f
|
3 |
+
size 108073
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -24,7 +24,7 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[ 0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[-0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,7 +56,7 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c6000772dd0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c6000767500>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1689843750259356810,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGOrePkPk/bv42g8/GOrePkPk/bv42g8/GOrePkPk/bv42g8/GOrePkPk/bv42g8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAb0LNPrVm+D7hUyY/QVlOP/AUwz8VLBQ+M3FlP6h8178llce+yJP9PfMHQz+mi8G+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAY6t4+Q+T9u/jaDz/zNeI7341POvi0hzsY6t4+Q+T9u/jaDz/zNeI7341POvi0hzsY6t4+Q+T9u/jaDz/zNeI7341POvi0hzsY6t4+Q+T9u/jaDz/zNeI7341POvi0hzuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.43537974 -0.00774816 0.56193495]\n [ 0.43537974 -0.00774816 0.56193495]\n [ 0.43537974 -0.00774816 0.56193495]\n [ 0.43537974 -0.00774816 0.56193495]]",
|
38 |
+
"desired_goal": "[[ 0.40089747 0.4851586 0.6497174 ]\n [ 0.8060494 1.5240765 0.14469941]\n [ 0.89625853 -1.6834917 -0.38980976]\n [ 0.12381703 0.76184005 -0.37801856]]",
|
39 |
+
"observation": "[[ 0.43537974 -0.00774816 0.56193495 0.0069034 0.00079176 0.00414145]\n [ 0.43537974 -0.00774816 0.56193495 0.0069034 0.00079176 0.00414145]\n [ 0.43537974 -0.00774816 0.56193495 0.0069034 0.00079176 0.00414145]\n [ 0.43537974 -0.00774816 0.56193495 0.0069034 0.00079176 0.00414145]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuBuNvfMsD76SDkA+xwvSPSbLgbx1uQY+tLG+vc9S1jzRRrE9AK/mvV8o+70E7oo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.06890053 -0.1398199 0.18755558]\n [ 0.10256153 -0.01584394 0.13156684]\n [-0.09311238 0.02616253 0.08656085]\n [-0.11263847 -0.1226356 0.27134717]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIptJPOLu15r+UhpRSlIwBbJRLMowBdJRHQKaaTZrYXft1fZQoaAZoCWgPQwiP/pdr0eIJwJSGlFKUaBVLMmgWR0Cmmg+9i+cpdX2UKGgGaAloD0MIZW8p54u997+UhpRSlGgVSzJoFkdAppnO+IuXeHV9lChoBmgJaA9DCEetMH2v4fG/lIaUUpRoFUsyaBZHQKaZkS39aU11fZQoaAZoCWgPQwineccpOlL0v5SGlFKUaBVLMmgWR0Cmm3CF9KEndX2UKGgGaAloD0MIv0nToGie97+UhpRSlGgVSzJoFkdAppszDl5nlHV9lChoBmgJaA9DCAjMQ6Z8SP+/lIaUUpRoFUsyaBZHQKaa8m51/2F1fZQoaAZoCWgPQwghO29jsyMDwJSGlFKUaBVLMmgWR0CmmrSfDk2hdX2UKGgGaAloD0MIOxqH+l1Y/7+UhpRSlGgVSzJoFkdAppyA6XBxgnV9lChoBmgJaA9DCMiakUHuYve/lIaUUpRoFUsyaBZHQKacQvlEJBx1fZQoaAZoCWgPQwjQ7/s3L54RwJSGlFKUaBVLMmgWR0CmnAIwdsBRdX2UKGgGaAloD0MImPp5U5FK97+UhpRSlGgVSzJoFkdAppvETpPhynV9lChoBmgJaA9DCF9CBYcXRO6/lIaUUpRoFUsyaBZHQKadsgyM1j11fZQoaAZoCWgPQwhl3xXB/9b3v5SGlFKUaBVLMmgWR0CmnXQlSjxkdX2UKGgGaAloD0MIqB3+mqxxEcCUhpRSlGgVSzJoFkdApp0zaPCEYnV9lChoBmgJaA9DCC48LxUb0wfAlIaUUpRoFUsyaBZHQKac9mAbyYp1fZQoaAZoCWgPQwhG66hqgpggwJSGlFKUaBVLMmgWR0Cmns3azu4PdX2UKGgGaAloD0MI9bnaiv1VEMCUhpRSlGgVSzJoFkdApp6PyLAHmnV9lChoBmgJaA9DCD+QvHMoQwjAlIaUUpRoFUsyaBZHQKaeTwKjSG91fZQoaAZoCWgPQwjueJPfotMQwJSGlFKUaBVLMmgWR0CmnhEauOjqdX2UKGgGaAloD0MIW11OCYjJ+L+UhpRSlGgVSzJoFkdApqAljslb/3V9lChoBmgJaA9DCD0nvW987QPAlIaUUpRoFUsyaBZHQKaf6HARChN1fZQoaAZoCWgPQwj5odKImX38v5SGlFKUaBVLMmgWR0Cmn6jL0SRKdX2UKGgGaAloD0MIbatZZ3wf/L+UhpRSlGgVSzJoFkdApp9rySV4YHV9lChoBmgJaA9DCHAjZYukXfy/lIaUUpRoFUsyaBZHQKah8FWXC0p1fZQoaAZoCWgPQwhlNV1PdL0BwJSGlFKUaBVLMmgWR0CmobNb1RLsdX2UKGgGaAloD0MIwCFUqdmjAcCUhpRSlGgVSzJoFkdApqFzaAWi13V9lChoBmgJaA9DCOWYLO4/Mv+/lIaUUpRoFUsyaBZHQKahNhOP/711fZQoaAZoCWgPQwg661OOyUIOwJSGlFKUaBVLMmgWR0Cmo7hK+SKWdX2UKGgGaAloD0MIMV2I1R+BBsCUhpRSlGgVSzJoFkdApqN7G7z06HV9lChoBmgJaA9DCFNCsKpeXgXAlIaUUpRoFUsyaBZHQKajOvvBrN51fZQoaAZoCWgPQwjueJPfolP1v5SGlFKUaBVLMmgWR0Cmov2eHzpYdX2UKGgGaAloD0MInBcnvtpxAcCUhpRSlGgVSzJoFkdApqUyGDcuanV9lChoBmgJaA9DCMSymUNSiwXAlIaUUpRoFUsyaBZHQKak9C2MKkV1fZQoaAZoCWgPQwhfQC/cufAIwJSGlFKUaBVLMmgWR0CmpLNqgyuZdX2UKGgGaAloD0MIWvENhc8W8L+UhpRSlGgVSzJoFkdApqR1cY64lXV9lChoBmgJaA9DCDBmS1ZFOBHAlIaUUpRoFUsyaBZHQKamRDMNc4Z1fZQoaAZoCWgPQwh7MZQT7WoGwJSGlFKUaBVLMmgWR0CmpgZG8VYZdX2UKGgGaAloD0MIdY4B2etdCcCUhpRSlGgVSzJoFkdApqXFh3JPqXV9lChoBmgJaA9DCOTAq+XOTPW/lIaUUpRoFUsyaBZHQKalh6E8JUp1fZQoaAZoCWgPQwiCHf8FggDpv5SGlFKUaBVLMmgWR0Cmp1fJeVs2dX2UKGgGaAloD0MImgZF8wDW/7+UhpRSlGgVSzJoFkdApqcZ37k4m3V9lChoBmgJaA9DCFioNc07jve/lIaUUpRoFUsyaBZHQKam2PGyX2N1fZQoaAZoCWgPQwglAtU/iOT8v5SGlFKUaBVLMmgWR0CmppryDqW1dX2UKGgGaAloD0MIEojX9Qt2+b+UhpRSlGgVSzJoFkdApqhcJjUd73V9lChoBmgJaA9DCPRuLCgMmhDAlIaUUpRoFUsyaBZHQKaoHkIX0oV1fZQoaAZoCWgPQwjm6VxRSqgWwJSGlFKUaBVLMmgWR0Cmp91/Ue+3dX2UKGgGaAloD0MIDMwKRbpf+r+UhpRSlGgVSzJoFkdApqefcJtzjnV9lChoBmgJaA9DCKsGYW73khLAlIaUUpRoFUsyaBZHQKapaZJkGzN1fZQoaAZoCWgPQwhoIJbNHBLuv5SGlFKUaBVLMmgWR0CmqSunl4kedX2UKGgGaAloD0MIl43O+SluDsCUhpRSlGgVSzJoFkdApqjq17Y023V9lChoBmgJaA9DCBOdZRah2A7AlIaUUpRoFUsyaBZHQKaorPhybQV1fZQoaAZoCWgPQwhA9+XMdgX1v5SGlFKUaBVLMmgWR0Cmqn73fyf+dX2UKGgGaAloD0MI9mBSfHxSEcCUhpRSlGgVSzJoFkdApqpBJiAlOXV9lChoBmgJaA9DCNrmxvSEJQXAlIaUUpRoFUsyaBZHQKaqAE9Mbm51fZQoaAZoCWgPQwgllSnmIAgDwJSGlFKUaBVLMmgWR0CmqcJW/8EWdX2UKGgGaAloD0MIJ6PKMO6G6r+UhpRSlGgVSzJoFkdApquU5bQkX3V9lChoBmgJaA9DCGOZfol4KwzAlIaUUpRoFUsyaBZHQKarVvDxb0R1fZQoaAZoCWgPQwgYsyWrItz3v5SGlFKUaBVLMmgWR0CmqxYZVGTcdX2UKGgGaAloD0MIhgMhWcCE7L+UhpRSlGgVSzJoFkdApqrYL1EmY3V9lChoBmgJaA9DCBzw+WGEsPq/lIaUUpRoFUsyaBZHQKastWkJrtV1fZQoaAZoCWgPQwg+k/3zNMAPwJSGlFKUaBVLMmgWR0CmrHd7F85TdX2UKGgGaAloD0MIHH3MBwQqJcCUhpRSlGgVSzJoFkdApqw2jO9nLHV9lChoBmgJaA9DCLA3MSQncxbAlIaUUpRoFUsyaBZHQKar+I+nqFB1fZQoaAZoCWgPQwiEnWLVIJwQwJSGlFKUaBVLMmgWR0CmrdyBkI5YdX2UKGgGaAloD0MI0LTEymgkB8CUhpRSlGgVSzJoFkdApq2emFaje3V9lChoBmgJaA9DCPOrOUAwpxDAlIaUUpRoFUsyaBZHQKatXanrIHV1fZQoaAZoCWgPQwjbboJvmp4DwJSGlFKUaBVLMmgWR0CmrR/PomojdX2UKGgGaAloD0MI8bp+wW7oFcCUhpRSlGgVSzJoFkdApq7vpMYdhnV9lChoBmgJaA9DCAx07Qvo9RHAlIaUUpRoFUsyaBZHQKausgWac7R1fZQoaAZoCWgPQwjf+UUJ+vscwJSGlFKUaBVLMmgWR0CmrnFYdQwcdX2UKGgGaAloD0MIDt3sD5Rb47+UhpRSlGgVSzJoFkdApq4zZnL7oHV9lChoBmgJaA9DCHv18dB39/W/lIaUUpRoFUsyaBZHQKawEOKfnOl1fZQoaAZoCWgPQwhDO6dZoB0GwJSGlFKUaBVLMmgWR0Cmr9Lux8lYdX2UKGgGaAloD0MITkLpCyHHCsCUhpRSlGgVSzJoFkdApq+SmygPE3V9lChoBmgJaA9DCETDYtS19vG/lIaUUpRoFUsyaBZHQKavVInSfDl1fZQoaAZoCWgPQwjchHtl3uoCwJSGlFKUaBVLMmgWR0CmsTfQjUutdX2UKGgGaAloD0MIsTTwoxq2AMCUhpRSlGgVSzJoFkdAprD6QvHtGHV9lChoBmgJaA9DCKewUkFFRRLAlIaUUpRoFUsyaBZHQKawulCTlkp1fZQoaAZoCWgPQwi95erHJjnxv5SGlFKUaBVLMmgWR0CmsHyMtK7JdX2UKGgGaAloD0MIEHf1KjKaCcCUhpRSlGgVSzJoFkdAprJnhQ3xWnV9lChoBmgJaA9DCF6iemtga/W/lIaUUpRoFUsyaBZHQKayKaZQYUF1fZQoaAZoCWgPQwi7fsFu2PYMwJSGlFKUaBVLMmgWR0CmsemmDUVjdX2UKGgGaAloD0MIjSlY42xaDcCUhpRSlGgVSzJoFkdAprGryDqW1XV9lChoBmgJaA9DCFCm0eRiLAjAlIaUUpRoFUsyaBZHQKazf7u2JBR1fZQoaAZoCWgPQwi0HVN3ZUcVwJSGlFKUaBVLMmgWR0Cms0H+yZ8bdX2UKGgGaAloD0MIJ/im6bMjDcCUhpRSlGgVSzJoFkdAprMBS5y2hXV9lChoBmgJaA9DCFDDt7Bu3AjAlIaUUpRoFUsyaBZHQKayw3VCojx1fZQoaAZoCWgPQwitbvWc9L71v5SGlFKUaBVLMmgWR0CmtJOJtSAIdX2UKGgGaAloD0MIYvTcQlfCBcCUhpRSlGgVSzJoFkdAprRVpqREGHV9lChoBmgJaA9DCGQ9tfrqqg3AlIaUUpRoFUsyaBZHQKa0FQRf4RF1fZQoaAZoCWgPQwihnj4Cf3gVwJSGlFKUaBVLMmgWR0Cms9dHlOoHdX2UKGgGaAloD0MIy4P0FDlEF8CUhpRSlGgVSzJoFkdAprWrfzjFQ3V9lChoBmgJaA9DCGtj7ISXYPi/lIaUUpRoFUsyaBZHQKa1bbAUL2J1fZQoaAZoCWgPQwjYutQI/WwNwJSGlFKUaBVLMmgWR0CmtSz5GjKxdX2UKGgGaAloD0MIbEPFOH/zCcCUhpRSlGgVSzJoFkdAprTvCVKPGXV9lChoBmgJaA9DCP0ubM1WXuS/lIaUUpRoFUsyaBZHQKa21QMQVbl1fZQoaAZoCWgPQwhNZryt9KobwJSGlFKUaBVLMmgWR0CmtpeyzHCGdX2UKGgGaAloD0MI4/xNKEQgDsCUhpRSlGgVSzJoFkdAprZW6PKdQXV9lChoBmgJaA9DCPXabKzEHBfAlIaUUpRoFUsyaBZHQKa2GbG3nZF1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d125768a2df2a11e479e9b9fc048555ee5d022a121e69f111b53334f64d9f92d
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05c2296950612fe6a19b0bbe464a928c213ee9bf187d4d2dbf62a9217ad2997f
|
3 |
size 46014
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
- OS: Linux-5.15.
|
2 |
-
- Python: 3.10.
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
- GPU Enabled: True
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
- GPU Enabled: True
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2a47041990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2a47033800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687107678719616771, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcyj3PtzipDxAuA4/cyj3PtzipDxAuA4/cyj3PtzipDxAuA4/cyj3PtzipDxAuA4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAx5ZivnesB75O//A+dWF4Pxzjrj8mzdu/RWzBv05dDL9l4o0+ZNg8P60oJb/hqzo/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABzKPc+3OKkPEC4Dj9li0E7NAMKO0467rtzKPc+3OKkPEC4Dj9li0E7NAMKO0467rtzKPc+3OKkPEC4Dj9li0E7NAMKO0467rtzKPc+3OKkPEC4Dj9li0E7NAMKO0467ruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.48273048 0.02012771 0.55749893]\n [0.48273048 0.02012771 0.55749893]\n [0.48273048 0.02012771 0.55749893]\n [0.48273048 0.02012771 0.55749893]]", "desired_goal": "[[-0.2212783 -0.13249384 0.47069782]\n [ 0.9702371 1.3663058 -1.7171981 ]\n [-1.5111166 -0.5482987 0.27711788]\n [ 0.73767686 -0.6451519 0.72918516]]", "observation": "[[ 0.48273048 0.02012771 0.55749893 0.00295325 0.0021059 -0.00727013]\n [ 0.48273048 0.02012771 0.55749893 0.00295325 0.0021059 -0.00727013]\n [ 0.48273048 0.02012771 0.55749893 0.00295325 0.0021059 -0.00727013]\n [ 0.48273048 0.02012771 0.55749893 0.00295325 0.0021059 -0.00727013]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzzW5vWmCQD1sElI9vDX8vSQSgT07sO08iHn1Pc0YhD1WNIk9KpadPHh1C760vXI8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09043466 0.04699937 0.0512871 ]\n [-0.12314937 0.06302288 0.0290147 ]\n [ 0.11986071 0.06450043 0.06699435]\n [ 0.01923664 -0.1361903 0.01481574]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwY9q2O/pB8CUhpRSlIwBbJRLMowBdJRHQKVcZMsYl6Z1fZQoaAZoCWgPQwg0EMtmDvkSwJSGlFKUaBVLMmgWR0ClXCdIGyHEdX2UKGgGaAloD0MIOzquRnZlBsCUhpRSlGgVSzJoFkdApVvtOj7AL3V9lChoBmgJaA9DCBy0Vx8PPQnAlIaUUpRoFUsyaBZHQKVbsj2zv7Z1fZQoaAZoCWgPQwgniLoPQGoNwJSGlFKUaBVLMmgWR0ClXT+N96TodX2UKGgGaAloD0MIhJ7Nqs8VAcCUhpRSlGgVSzJoFkdApV0CQRwqAnV9lChoBmgJaA9DCD9XW7G/bBvAlIaUUpRoFUsyaBZHQKVcyEQGwA51fZQoaAZoCWgPQwiq1sIstHP/v5SGlFKUaBVLMmgWR0ClXI05uIhydX2UKGgGaAloD0MIuoWuRKB6GcCUhpRSlGgVSzJoFkdApV4fdRBNVXV9lChoBmgJaA9DCAcpeAq58gjAlIaUUpRoFUsyaBZHQKVd4h0Qsf91fZQoaAZoCWgPQwj2Rq0wfU8KwJSGlFKUaBVLMmgWR0ClXafsNUfgdX2UKGgGaAloD0MILIApAweUEsCUhpRSlGgVSzJoFkdApV1sstkFwHV9lChoBmgJaA9DCE3YfjLGBwvAlIaUUpRoFUsyaBZHQKVfChW5pal1fZQoaAZoCWgPQwhfYFYo0v0MwJSGlFKUaBVLMmgWR0ClXsyQHRkVdX2UKGgGaAloD0MIRdREn49yCsCUhpRSlGgVSzJoFkdApV6Sasp5NXV9lChoBmgJaA9DCJWAmIQLGQfAlIaUUpRoFUsyaBZHQKVeVz5oGpx1fZQoaAZoCWgPQwiwOQfPhAYLwJSGlFKUaBVLMmgWR0ClX/SwfQrudX2UKGgGaAloD0MIHeT1YFJ8+7+UhpRSlGgVSzJoFkdApV+3Zdv863V9lChoBmgJaA9DCM+Du7N2CxLAlIaUUpRoFUsyaBZHQKVffVrhzeZ1fZQoaAZoCWgPQwjXo3A9CvcMwJSGlFKUaBVLMmgWR0ClX0JJoTPCdX2UKGgGaAloD0MITPxR1Jm7BMCUhpRSlGgVSzJoFkdApWDT8cdYGXV9lChoBmgJaA9DCNdMvtnmRgXAlIaUUpRoFUsyaBZHQKVgln6Eal11fZQoaAZoCWgPQwifWn11VWADwJSGlFKUaBVLMmgWR0ClYFxZuAI6dX2UKGgGaAloD0MIuqP/5Vr0BcCUhpRSlGgVSzJoFkdApWAhFspG4XV9lChoBmgJaA9DCDxQpzy6wRLAlIaUUpRoFUsyaBZHQKVhreAuqWF1fZQoaAZoCWgPQwjryJHOwMgTwJSGlFKUaBVLMmgWR0ClYXBvJiiJdX2UKGgGaAloD0MIrd12obmuC8CUhpRSlGgVSzJoFkdApWE2QuEmIHV9lChoBmgJaA9DCPWc9L7x9QbAlIaUUpRoFUsyaBZHQKVg+xesxPB1fZQoaAZoCWgPQwhUOe0pOXcRwJSGlFKUaBVLMmgWR0ClYoUDuBtldX2UKGgGaAloD0MIiIGufQENEMCUhpRSlGgVSzJoFkdApWJHlU6xPnV9lChoBmgJaA9DCIOluoCXSRLAlIaUUpRoFUsyaBZHQKViDZV4oql1fZQoaAZoCWgPQwhKtyVywRkLwJSGlFKUaBVLMmgWR0ClYdJdB0IUdX2UKGgGaAloD0MIIef9f5zQCcCUhpRSlGgVSzJoFkdApWPPKU3XI3V9lChoBmgJaA9DCFSp2QOtYAXAlIaUUpRoFUsyaBZHQKVjkjD8+A51fZQoaAZoCWgPQwi1No3ttQADwJSGlFKUaBVLMmgWR0ClY1iyhSLqdX2UKGgGaAloD0MIQz19BP6QCMCUhpRSlGgVSzJoFkdApWMeO6unuXV9lChoBmgJaA9DCPYNTG4U+QXAlIaUUpRoFUsyaBZHQKVlPQ2uPmx1fZQoaAZoCWgPQwhbe5+qQsMTwJSGlFKUaBVLMmgWR0ClZQBGYrrgdX2UKGgGaAloD0MIQ+c1donKCcCUhpRSlGgVSzJoFkdApWTG1c+qznV9lChoBmgJaA9DCKWGNgAbQCDAlIaUUpRoFUsyaBZHQKVkjD+irT91fZQoaAZoCWgPQwgMsmX5uuwCwJSGlFKUaBVLMmgWR0ClZpm6oVEedX2UKGgGaAloD0MIEjElkuhFBsCUhpRSlGgVSzJoFkdApWZc3S8aoHV9lChoBmgJaA9DCKd4XFSLaAjAlIaUUpRoFUsyaBZHQKVmI2Yv38J1fZQoaAZoCWgPQwhyF2GKckkHwJSGlFKUaBVLMmgWR0ClZejUmUnpdX2UKGgGaAloD0MI/B2KAn3iCsCUhpRSlGgVSzJoFkdApWgQaisXBXV9lChoBmgJaA9DCILK+PcZ1w7AlIaUUpRoFUsyaBZHQKVn01x82Jl1fZQoaAZoCWgPQwhckZighp8UwJSGlFKUaBVLMmgWR0ClZ5ogeRxMdX2UKGgGaAloD0MIlZ7pJcaSD8CUhpRSlGgVSzJoFkdApWdfZ9NN8HV9lChoBmgJaA9DCLjKEwg7dRHAlIaUUpRoFUsyaBZHQKVpfdbgTAZ1fZQoaAZoCWgPQwgkJqjhWzgGwJSGlFKUaBVLMmgWR0ClaUDlgc94dX2UKGgGaAloD0MIR3GOOjpuDsCUhpRSlGgVSzJoFkdApWkHWpZOi3V9lChoBmgJaA9DCDFe86rOygnAlIaUUpRoFUsyaBZHQKVozO0svqV1fZQoaAZoCWgPQwjwGYnQCCYQwJSGlFKUaBVLMmgWR0ClauuLJjlQdX2UKGgGaAloD0MINBKhEWxcD8CUhpRSlGgVSzJoFkdApWqunMt9QXV9lChoBmgJaA9DCO8fC9EhsAXAlIaUUpRoFUsyaBZHQKVqdYHxBmh1fZQoaAZoCWgPQwi9qN2vAhwKwJSGlFKUaBVLMmgWR0ClajsERraedX2UKGgGaAloD0MIEcgljjzQA8CUhpRSlGgVSzJoFkdApWxdOVPepHV9lChoBmgJaA9DCG7DKAge/wTAlIaUUpRoFUsyaBZHQKVsIHaews51fZQoaAZoCWgPQwii0R3EzjQCwJSGlFKUaBVLMmgWR0Cla+b1yvLYdX2UKGgGaAloD0MIceSByCJtDsCUhpRSlGgVSzJoFkdApWushX8wYnV9lChoBmgJaA9DCLQevkwUgRLAlIaUUpRoFUsyaBZHQKVtxwDvE0l1fZQoaAZoCWgPQwgLthFPdmMQwJSGlFKUaBVLMmgWR0ClbYlnRLK3dX2UKGgGaAloD0MIFmwjnuymGcCUhpRSlGgVSzJoFkdApW1PWhAWznV9lChoBmgJaA9DCEMc6+I2Og3AlIaUUpRoFUsyaBZHQKVtFDRc/t91fZQoaAZoCWgPQwhhNCvbh7wJwJSGlFKUaBVLMmgWR0Clbp1+qioLdX2UKGgGaAloD0MIZK93f7zHFsCUhpRSlGgVSzJoFkdApW5gEyLyc3V9lChoBmgJaA9DCA6HpYEftQjAlIaUUpRoFUsyaBZHQKVuJepGWld1fZQoaAZoCWgPQwi4k4jwL4IUwJSGlFKUaBVLMmgWR0Clbeq5LAYYdX2UKGgGaAloD0MILnB5rBnZBMCUhpRSlGgVSzJoFkdApW99lVcUunV9lChoBmgJaA9DCOOncW9+owPAlIaUUpRoFUsyaBZHQKVvQB+4LCx1fZQoaAZoCWgPQwh/arx0k9gRwJSGlFKUaBVLMmgWR0ClbwYaHbh4dX2UKGgGaAloD0MIa/EpAMYzB8CUhpRSlGgVSzJoFkdApW7K1eBxxXV9lChoBmgJaA9DCLJoOjsZ/AbAlIaUUpRoFUsyaBZHQKVwUU/wAlx1fZQoaAZoCWgPQwjIX1rUJ7kGwJSGlFKUaBVLMmgWR0ClcBPStvGZdX2UKGgGaAloD0MIe8A8ZMqHEMCUhpRSlGgVSzJoFkdApW/ZpQDV6XV9lChoBmgJaA9DCBCwVu2a0BXAlIaUUpRoFUsyaBZHQKVvnnM+u/11fZQoaAZoCWgPQwjzjeiedc0KwJSGlFKUaBVLMmgWR0ClcTYFzMibdX2UKGgGaAloD0MInGuYofEkBsCUhpRSlGgVSzJoFkdApXD4r6LwWnV9lChoBmgJaA9DCHKkMzDyEgnAlIaUUpRoFUsyaBZHQKVwvpt78el1fZQoaAZoCWgPQwgNi1HX2tsDwJSGlFKUaBVLMmgWR0ClcINjCpFTdX2UKGgGaAloD0MIyJi7lpDvAMCUhpRSlGgVSzJoFkdApXIdGmUGFHV9lChoBmgJaA9DCGwHI/YJEBjAlIaUUpRoFUsyaBZHQKVx36OYIB11fZQoaAZoCWgPQwjd09Udi+0CwJSGlFKUaBVLMmgWR0ClcaWRJVbSdX2UKGgGaAloD0MI0TyARX69C8CUhpRSlGgVSzJoFkdApXFqbMHKOnV9lChoBmgJaA9DCDQSoRFsXBPAlIaUUpRoFUsyaBZHQKVy8/A0sOJ1fZQoaAZoCWgPQwh64jlbQCgQwJSGlFKUaBVLMmgWR0Clcraf8MuwdX2UKGgGaAloD0MIk1FlGHdDCMCUhpRSlGgVSzJoFkdApXJ8zsQd0nV9lChoBmgJaA9DCK/RcqCHWgnAlIaUUpRoFUsyaBZHQKVyQY5T6zp1fZQoaAZoCWgPQwiKx0W1iKj9v5SGlFKUaBVLMmgWR0Clc+dalk6LdX2UKGgGaAloD0MIqkVEMXnDAcCUhpRSlGgVSzJoFkdApXOp2Qnx8XV9lChoBmgJaA9DCJUp5iDoqAbAlIaUUpRoFUsyaBZHQKVzb9KEnLJ1fZQoaAZoCWgPQwiCAu/k02MYwJSGlFKUaBVLMmgWR0ClczShSLqEdX2UKGgGaAloD0MI00uMZfrFDsCUhpRSlGgVSzJoFkdApXTAx8D0UXV9lChoBmgJaA9DCH2tS43QTxbAlIaUUpRoFUsyaBZHQKV0g1pCa7V1fZQoaAZoCWgPQwgaTS7GwBoKwJSGlFKUaBVLMmgWR0CldEkxh2GJdX2UKGgGaAloD0MIuJVem43VB8CUhpRSlGgVSzJoFkdApXQOBreqJnV9lChoBmgJaA9DCIQOuoRDzxLAlIaUUpRoFUsyaBZHQKV1n9iMHbB1fZQoaAZoCWgPQwhZxLDDmFQFwJSGlFKUaBVLMmgWR0CldWJVCHARdX2UKGgGaAloD0MIxuBh2jcXC8CUhpRSlGgVSzJoFkdApXUoGwA2h3V9lChoBmgJaA9DCGXiVkEMxBbAlIaUUpRoFUsyaBZHQKV07OY6XBx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c6000772dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c6000767500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689843750259356810, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGOrePkPk/bv42g8/GOrePkPk/bv42g8/GOrePkPk/bv42g8/GOrePkPk/bv42g8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAb0LNPrVm+D7hUyY/QVlOP/AUwz8VLBQ+M3FlP6h8178llce+yJP9PfMHQz+mi8G+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAY6t4+Q+T9u/jaDz/zNeI7341POvi0hzsY6t4+Q+T9u/jaDz/zNeI7341POvi0hzsY6t4+Q+T9u/jaDz/zNeI7341POvi0hzsY6t4+Q+T9u/jaDz/zNeI7341POvi0hzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.43537974 -0.00774816 0.56193495]\n [ 0.43537974 -0.00774816 0.56193495]\n [ 0.43537974 -0.00774816 0.56193495]\n [ 0.43537974 -0.00774816 0.56193495]]", "desired_goal": "[[ 0.40089747 0.4851586 0.6497174 ]\n [ 0.8060494 1.5240765 0.14469941]\n [ 0.89625853 -1.6834917 -0.38980976]\n [ 0.12381703 0.76184005 -0.37801856]]", "observation": "[[ 0.43537974 -0.00774816 0.56193495 0.0069034 0.00079176 0.00414145]\n [ 0.43537974 -0.00774816 0.56193495 0.0069034 0.00079176 0.00414145]\n [ 0.43537974 -0.00774816 0.56193495 0.0069034 0.00079176 0.00414145]\n [ 0.43537974 -0.00774816 0.56193495 0.0069034 0.00079176 0.00414145]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuBuNvfMsD76SDkA+xwvSPSbLgbx1uQY+tLG+vc9S1jzRRrE9AK/mvV8o+70E7oo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06890053 -0.1398199 0.18755558]\n [ 0.10256153 -0.01584394 0.13156684]\n [-0.09311238 0.02616253 0.08656085]\n [-0.11263847 -0.1226356 0.27134717]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIptJPOLu15r+UhpRSlIwBbJRLMowBdJRHQKaaTZrYXft1fZQoaAZoCWgPQwiP/pdr0eIJwJSGlFKUaBVLMmgWR0Cmmg+9i+cpdX2UKGgGaAloD0MIZW8p54u997+UhpRSlGgVSzJoFkdAppnO+IuXeHV9lChoBmgJaA9DCEetMH2v4fG/lIaUUpRoFUsyaBZHQKaZkS39aU11fZQoaAZoCWgPQwineccpOlL0v5SGlFKUaBVLMmgWR0Cmm3CF9KEndX2UKGgGaAloD0MIv0nToGie97+UhpRSlGgVSzJoFkdAppszDl5nlHV9lChoBmgJaA9DCAjMQ6Z8SP+/lIaUUpRoFUsyaBZHQKaa8m51/2F1fZQoaAZoCWgPQwghO29jsyMDwJSGlFKUaBVLMmgWR0CmmrSfDk2hdX2UKGgGaAloD0MIOxqH+l1Y/7+UhpRSlGgVSzJoFkdAppyA6XBxgnV9lChoBmgJaA9DCMiakUHuYve/lIaUUpRoFUsyaBZHQKacQvlEJBx1fZQoaAZoCWgPQwjQ7/s3L54RwJSGlFKUaBVLMmgWR0CmnAIwdsBRdX2UKGgGaAloD0MImPp5U5FK97+UhpRSlGgVSzJoFkdAppvETpPhynV9lChoBmgJaA9DCF9CBYcXRO6/lIaUUpRoFUsyaBZHQKadsgyM1j11fZQoaAZoCWgPQwhl3xXB/9b3v5SGlFKUaBVLMmgWR0CmnXQlSjxkdX2UKGgGaAloD0MIqB3+mqxxEcCUhpRSlGgVSzJoFkdApp0zaPCEYnV9lChoBmgJaA9DCC48LxUb0wfAlIaUUpRoFUsyaBZHQKac9mAbyYp1fZQoaAZoCWgPQwhG66hqgpggwJSGlFKUaBVLMmgWR0Cmns3azu4PdX2UKGgGaAloD0MI9bnaiv1VEMCUhpRSlGgVSzJoFkdApp6PyLAHmnV9lChoBmgJaA9DCD+QvHMoQwjAlIaUUpRoFUsyaBZHQKaeTwKjSG91fZQoaAZoCWgPQwjueJPfotMQwJSGlFKUaBVLMmgWR0CmnhEauOjqdX2UKGgGaAloD0MIW11OCYjJ+L+UhpRSlGgVSzJoFkdApqAljslb/3V9lChoBmgJaA9DCD0nvW987QPAlIaUUpRoFUsyaBZHQKaf6HARChN1fZQoaAZoCWgPQwj5odKImX38v5SGlFKUaBVLMmgWR0Cmn6jL0SRKdX2UKGgGaAloD0MIbatZZ3wf/L+UhpRSlGgVSzJoFkdApp9rySV4YHV9lChoBmgJaA9DCHAjZYukXfy/lIaUUpRoFUsyaBZHQKah8FWXC0p1fZQoaAZoCWgPQwhlNV1PdL0BwJSGlFKUaBVLMmgWR0CmobNb1RLsdX2UKGgGaAloD0MIwCFUqdmjAcCUhpRSlGgVSzJoFkdApqFzaAWi13V9lChoBmgJaA9DCOWYLO4/Mv+/lIaUUpRoFUsyaBZHQKahNhOP/711fZQoaAZoCWgPQwg661OOyUIOwJSGlFKUaBVLMmgWR0Cmo7hK+SKWdX2UKGgGaAloD0MIMV2I1R+BBsCUhpRSlGgVSzJoFkdApqN7G7z06HV9lChoBmgJaA9DCFNCsKpeXgXAlIaUUpRoFUsyaBZHQKajOvvBrN51fZQoaAZoCWgPQwjueJPfolP1v5SGlFKUaBVLMmgWR0Cmov2eHzpYdX2UKGgGaAloD0MInBcnvtpxAcCUhpRSlGgVSzJoFkdApqUyGDcuanV9lChoBmgJaA9DCMSymUNSiwXAlIaUUpRoFUsyaBZHQKak9C2MKkV1fZQoaAZoCWgPQwhfQC/cufAIwJSGlFKUaBVLMmgWR0CmpLNqgyuZdX2UKGgGaAloD0MIWvENhc8W8L+UhpRSlGgVSzJoFkdApqR1cY64lXV9lChoBmgJaA9DCDBmS1ZFOBHAlIaUUpRoFUsyaBZHQKamRDMNc4Z1fZQoaAZoCWgPQwh7MZQT7WoGwJSGlFKUaBVLMmgWR0CmpgZG8VYZdX2UKGgGaAloD0MIdY4B2etdCcCUhpRSlGgVSzJoFkdApqXFh3JPqXV9lChoBmgJaA9DCOTAq+XOTPW/lIaUUpRoFUsyaBZHQKalh6E8JUp1fZQoaAZoCWgPQwiCHf8FggDpv5SGlFKUaBVLMmgWR0Cmp1fJeVs2dX2UKGgGaAloD0MImgZF8wDW/7+UhpRSlGgVSzJoFkdApqcZ37k4m3V9lChoBmgJaA9DCFioNc07jve/lIaUUpRoFUsyaBZHQKam2PGyX2N1fZQoaAZoCWgPQwglAtU/iOT8v5SGlFKUaBVLMmgWR0CmppryDqW1dX2UKGgGaAloD0MIEojX9Qt2+b+UhpRSlGgVSzJoFkdApqhcJjUd73V9lChoBmgJaA9DCPRuLCgMmhDAlIaUUpRoFUsyaBZHQKaoHkIX0oV1fZQoaAZoCWgPQwjm6VxRSqgWwJSGlFKUaBVLMmgWR0Cmp91/Ue+3dX2UKGgGaAloD0MIDMwKRbpf+r+UhpRSlGgVSzJoFkdApqefcJtzjnV9lChoBmgJaA9DCKsGYW73khLAlIaUUpRoFUsyaBZHQKapaZJkGzN1fZQoaAZoCWgPQwhoIJbNHBLuv5SGlFKUaBVLMmgWR0CmqSunl4kedX2UKGgGaAloD0MIl43O+SluDsCUhpRSlGgVSzJoFkdApqjq17Y023V9lChoBmgJaA9DCBOdZRah2A7AlIaUUpRoFUsyaBZHQKaorPhybQV1fZQoaAZoCWgPQwhA9+XMdgX1v5SGlFKUaBVLMmgWR0Cmqn73fyf+dX2UKGgGaAloD0MI9mBSfHxSEcCUhpRSlGgVSzJoFkdApqpBJiAlOXV9lChoBmgJaA9DCNrmxvSEJQXAlIaUUpRoFUsyaBZHQKaqAE9Mbm51fZQoaAZoCWgPQwgllSnmIAgDwJSGlFKUaBVLMmgWR0CmqcJW/8EWdX2UKGgGaAloD0MIJ6PKMO6G6r+UhpRSlGgVSzJoFkdApquU5bQkX3V9lChoBmgJaA9DCGOZfol4KwzAlIaUUpRoFUsyaBZHQKarVvDxb0R1fZQoaAZoCWgPQwgYsyWrItz3v5SGlFKUaBVLMmgWR0CmqxYZVGTcdX2UKGgGaAloD0MIhgMhWcCE7L+UhpRSlGgVSzJoFkdApqrYL1EmY3V9lChoBmgJaA9DCBzw+WGEsPq/lIaUUpRoFUsyaBZHQKastWkJrtV1fZQoaAZoCWgPQwg+k/3zNMAPwJSGlFKUaBVLMmgWR0CmrHd7F85TdX2UKGgGaAloD0MIHH3MBwQqJcCUhpRSlGgVSzJoFkdApqw2jO9nLHV9lChoBmgJaA9DCLA3MSQncxbAlIaUUpRoFUsyaBZHQKar+I+nqFB1fZQoaAZoCWgPQwiEnWLVIJwQwJSGlFKUaBVLMmgWR0CmrdyBkI5YdX2UKGgGaAloD0MI0LTEymgkB8CUhpRSlGgVSzJoFkdApq2emFaje3V9lChoBmgJaA9DCPOrOUAwpxDAlIaUUpRoFUsyaBZHQKatXanrIHV1fZQoaAZoCWgPQwjbboJvmp4DwJSGlFKUaBVLMmgWR0CmrR/PomojdX2UKGgGaAloD0MI8bp+wW7oFcCUhpRSlGgVSzJoFkdApq7vpMYdhnV9lChoBmgJaA9DCAx07Qvo9RHAlIaUUpRoFUsyaBZHQKausgWac7R1fZQoaAZoCWgPQwjf+UUJ+vscwJSGlFKUaBVLMmgWR0CmrnFYdQwcdX2UKGgGaAloD0MIDt3sD5Rb47+UhpRSlGgVSzJoFkdApq4zZnL7oHV9lChoBmgJaA9DCHv18dB39/W/lIaUUpRoFUsyaBZHQKawEOKfnOl1fZQoaAZoCWgPQwhDO6dZoB0GwJSGlFKUaBVLMmgWR0Cmr9Lux8lYdX2UKGgGaAloD0MITkLpCyHHCsCUhpRSlGgVSzJoFkdApq+SmygPE3V9lChoBmgJaA9DCETDYtS19vG/lIaUUpRoFUsyaBZHQKavVInSfDl1fZQoaAZoCWgPQwjchHtl3uoCwJSGlFKUaBVLMmgWR0CmsTfQjUutdX2UKGgGaAloD0MIsTTwoxq2AMCUhpRSlGgVSzJoFkdAprD6QvHtGHV9lChoBmgJaA9DCKewUkFFRRLAlIaUUpRoFUsyaBZHQKawulCTlkp1fZQoaAZoCWgPQwi95erHJjnxv5SGlFKUaBVLMmgWR0CmsHyMtK7JdX2UKGgGaAloD0MIEHf1KjKaCcCUhpRSlGgVSzJoFkdAprJnhQ3xWnV9lChoBmgJaA9DCF6iemtga/W/lIaUUpRoFUsyaBZHQKayKaZQYUF1fZQoaAZoCWgPQwi7fsFu2PYMwJSGlFKUaBVLMmgWR0CmsemmDUVjdX2UKGgGaAloD0MIjSlY42xaDcCUhpRSlGgVSzJoFkdAprGryDqW1XV9lChoBmgJaA9DCFCm0eRiLAjAlIaUUpRoFUsyaBZHQKazf7u2JBR1fZQoaAZoCWgPQwi0HVN3ZUcVwJSGlFKUaBVLMmgWR0Cms0H+yZ8bdX2UKGgGaAloD0MIJ/im6bMjDcCUhpRSlGgVSzJoFkdAprMBS5y2hXV9lChoBmgJaA9DCFDDt7Bu3AjAlIaUUpRoFUsyaBZHQKayw3VCojx1fZQoaAZoCWgPQwitbvWc9L71v5SGlFKUaBVLMmgWR0CmtJOJtSAIdX2UKGgGaAloD0MIYvTcQlfCBcCUhpRSlGgVSzJoFkdAprRVpqREGHV9lChoBmgJaA9DCGQ9tfrqqg3AlIaUUpRoFUsyaBZHQKa0FQRf4RF1fZQoaAZoCWgPQwihnj4Cf3gVwJSGlFKUaBVLMmgWR0Cms9dHlOoHdX2UKGgGaAloD0MIy4P0FDlEF8CUhpRSlGgVSzJoFkdAprWrfzjFQ3V9lChoBmgJaA9DCGtj7ISXYPi/lIaUUpRoFUsyaBZHQKa1bbAUL2J1fZQoaAZoCWgPQwjYutQI/WwNwJSGlFKUaBVLMmgWR0CmtSz5GjKxdX2UKGgGaAloD0MIbEPFOH/zCcCUhpRSlGgVSzJoFkdAprTvCVKPGXV9lChoBmgJaA9DCP0ubM1WXuS/lIaUUpRoFUsyaBZHQKa21QMQVbl1fZQoaAZoCWgPQwhNZryt9KobwJSGlFKUaBVLMmgWR0CmtpeyzHCGdX2UKGgGaAloD0MI4/xNKEQgDsCUhpRSlGgVSzJoFkdAprZW6PKdQXV9lChoBmgJaA9DCPXabKzEHBfAlIaUUpRoFUsyaBZHQKa2GbG3nZF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -2.57218838800909, "std_reward": 1.8402212349758087, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-20T09:51:01.855437"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d775179f9373b687a05e3142f97585730a87cf4fc57cf22a18a656f4afd87dae
|
3 |
size 2387
|