End of training
Browse files- README.md +25 -15
- model.safetensors +1 -1
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -52,30 +52,40 @@ More information needed
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
-
- learning_rate:
|
56 |
- train_batch_size: 8
|
57 |
- eval_batch_size: 8
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
-
- num_epochs:
|
63 |
- mixed_precision_training: Native AMP
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| 2.
|
70 |
-
| 1.
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
|
81 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.82
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.6623
|
36 |
+
- Accuracy: 0.82
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 3e-05
|
56 |
- train_batch_size: 8
|
57 |
- eval_batch_size: 8
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 20
|
63 |
- mixed_precision_training: Native AMP
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 2.2457 | 1.0 | 113 | 2.1827 | 0.33 |
|
70 |
+
| 1.8385 | 2.0 | 226 | 1.6935 | 0.61 |
|
71 |
+
| 1.46 | 3.0 | 339 | 1.4282 | 0.63 |
|
72 |
+
| 1.1508 | 4.0 | 452 | 1.1055 | 0.7 |
|
73 |
+
| 0.9972 | 5.0 | 565 | 0.8945 | 0.74 |
|
74 |
+
| 0.7826 | 6.0 | 678 | 0.7784 | 0.77 |
|
75 |
+
| 0.6802 | 7.0 | 791 | 0.7184 | 0.8 |
|
76 |
+
| 0.4635 | 8.0 | 904 | 0.7725 | 0.76 |
|
77 |
+
| 0.3746 | 9.0 | 1017 | 0.5875 | 0.84 |
|
78 |
+
| 0.264 | 10.0 | 1130 | 0.7612 | 0.75 |
|
79 |
+
| 0.1995 | 11.0 | 1243 | 0.6099 | 0.81 |
|
80 |
+
| 0.135 | 12.0 | 1356 | 0.6306 | 0.81 |
|
81 |
+
| 0.0974 | 13.0 | 1469 | 0.5947 | 0.83 |
|
82 |
+
| 0.0563 | 14.0 | 1582 | 0.7485 | 0.8 |
|
83 |
+
| 0.0443 | 15.0 | 1695 | 0.6977 | 0.79 |
|
84 |
+
| 0.0565 | 16.0 | 1808 | 0.6331 | 0.83 |
|
85 |
+
| 0.0295 | 17.0 | 1921 | 0.6538 | 0.82 |
|
86 |
+
| 0.0178 | 18.0 | 2034 | 0.6977 | 0.82 |
|
87 |
+
| 0.0191 | 19.0 | 2147 | 0.6453 | 0.83 |
|
88 |
+
| 0.0147 | 20.0 | 2260 | 0.6623 | 0.82 |
|
89 |
|
90 |
|
91 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94771728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7cd64385397fe00e287b20426b4b0b1136bc9186d1d4f26571d1fcc9179cdf88
|
3 |
size 94771728
|