End of training
Browse files
README.md
CHANGED
@@ -5,9 +5,24 @@ tags:
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- marsyas/gtzan
|
|
|
|
|
8 |
model-index:
|
9 |
- name: distilhubert-finetuned-gtzan
|
10 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -16,6 +31,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
# distilhubert-finetuned-gtzan
|
17 |
|
18 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
|
|
|
|
|
|
19 |
|
20 |
## Model description
|
21 |
|
@@ -44,6 +62,22 @@ The following hyperparameters were used during training:
|
|
44 |
- num_epochs: 10
|
45 |
- mixed_precision_training: Native AMP
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
### Framework versions
|
48 |
|
49 |
- Transformers 4.41.2
|
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- marsyas/gtzan
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
model-index:
|
11 |
- name: distilhubert-finetuned-gtzan
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Audio Classification
|
15 |
+
type: audio-classification
|
16 |
+
dataset:
|
17 |
+
name: GTZAN
|
18 |
+
type: marsyas/gtzan
|
19 |
+
config: all
|
20 |
+
split: train
|
21 |
+
args: all
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.86
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
# distilhubert-finetuned-gtzan
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.5324
|
36 |
+
- Accuracy: 0.86
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
62 |
- num_epochs: 10
|
63 |
- mixed_precision_training: Native AMP
|
64 |
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 1.9201 | 1.0 | 113 | 1.8096 | 0.56 |
|
70 |
+
| 1.2331 | 2.0 | 226 | 1.2709 | 0.6 |
|
71 |
+
| 1.0386 | 3.0 | 339 | 0.9960 | 0.73 |
|
72 |
+
| 0.6721 | 4.0 | 452 | 0.8535 | 0.72 |
|
73 |
+
| 0.5598 | 5.0 | 565 | 0.7156 | 0.81 |
|
74 |
+
| 0.4382 | 6.0 | 678 | 0.6253 | 0.83 |
|
75 |
+
| 0.2701 | 7.0 | 791 | 0.5411 | 0.84 |
|
76 |
+
| 0.1164 | 8.0 | 904 | 0.5460 | 0.83 |
|
77 |
+
| 0.1872 | 9.0 | 1017 | 0.5464 | 0.84 |
|
78 |
+
| 0.0898 | 10.0 | 1130 | 0.5324 | 0.86 |
|
79 |
+
|
80 |
+
|
81 |
### Framework versions
|
82 |
|
83 |
- Transformers 4.41.2
|