JvThunder commited on
Commit
f13b86d
1 Parent(s): 2632f15

End of training

Browse files
Files changed (1) hide show
  1. README.md +35 -1
README.md CHANGED
@@ -5,9 +5,24 @@ tags:
5
  - generated_from_trainer
6
  datasets:
7
  - marsyas/gtzan
 
 
8
  model-index:
9
  - name: distilhubert-finetuned-gtzan
10
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -16,6 +31,9 @@ should probably proofread and complete it, then remove this comment. -->
16
  # distilhubert-finetuned-gtzan
17
 
18
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
 
 
 
19
 
20
  ## Model description
21
 
@@ -44,6 +62,22 @@ The following hyperparameters were used during training:
44
  - num_epochs: 10
45
  - mixed_precision_training: Native AMP
46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  ### Framework versions
48
 
49
  - Transformers 4.41.2
 
5
  - generated_from_trainer
6
  datasets:
7
  - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
  model-index:
11
  - name: distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.86
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
  # distilhubert-finetuned-gtzan
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.5324
36
+ - Accuracy: 0.86
37
 
38
  ## Model description
39
 
 
62
  - num_epochs: 10
63
  - mixed_precision_training: Native AMP
64
 
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.9201 | 1.0 | 113 | 1.8096 | 0.56 |
70
+ | 1.2331 | 2.0 | 226 | 1.2709 | 0.6 |
71
+ | 1.0386 | 3.0 | 339 | 0.9960 | 0.73 |
72
+ | 0.6721 | 4.0 | 452 | 0.8535 | 0.72 |
73
+ | 0.5598 | 5.0 | 565 | 0.7156 | 0.81 |
74
+ | 0.4382 | 6.0 | 678 | 0.6253 | 0.83 |
75
+ | 0.2701 | 7.0 | 791 | 0.5411 | 0.84 |
76
+ | 0.1164 | 8.0 | 904 | 0.5460 | 0.83 |
77
+ | 0.1872 | 9.0 | 1017 | 0.5464 | 0.84 |
78
+ | 0.0898 | 10.0 | 1130 | 0.5324 | 0.86 |
79
+
80
+
81
  ### Framework versions
82
 
83
  - Transformers 4.41.2