File size: 7,524 Bytes
d328e84
2171138
37e8783
 
2171138
 
 
 
 
 
 
 
 
37e8783
2171138
 
 
 
 
 
37e8783
58f7fd5
2171138
37e8783
58f7fd5
2171138
37e8783
58f7fd5
2171138
37e8783
58f7fd5
d328e84
2171138
 
 
 
 
f3223f2
2171138
 
37e8783
 
2171138
 
 
 
 
 
 
 
 
ae881db
2171138
 
 
 
 
 
 
 
 
 
 
 
 
0d371c7
f3223f2
2171138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3223f2
 
58f7fd5
f3223f2
2171138
58f7fd5
2171138
 
f3223f2
58f7fd5
2171138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
language:
- es
thumbnail: null
tags:
- audio-classification
- speechbrain
- embeddings
- Accent Identification
- pytorch
- wav2vec2
- XLSR
- CommonAccent
license: mit
datasets:
- CommonVoice
metrics:
- Accuracy
widget:
- example_title: Caribe-Colombia-Cuba
  src: >-
    https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-es-spanish/resolve/main/data/caribe-cuba-colombia.wav
- example_title: Andino
  src: >-
    https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-es-spanish/resolve/main/data/andino.wav
- example_title: Mexico
  src: >-
    https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-es-panish/resolve/main/data/mexico.wav
- example_title: Spain
  src: >-
    https://huggingface.co/Jzuluaga/accent-id-commonaccent_xlsr-es-spanish/resolve/main/data/spain.wav
---


<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>


# CommonAccent: Exploring Large Acoustic Pretrained Models for Accent Classification Based on Common Voice

**Spanish Accent Classifier**


**Abstract**: 
Despite the recent advancements in Automatic Speech Recognition (ASR), the recognition of accented speech still remains a dominant problem. In order to create more inclusive ASR systems, research has shown that the integration of accent information, as part of a larger ASR framework, can lead to the mitigation of accented speech errors. We address multilingual accent classification through the ECAPA-TDNN and Wav2Vec 2.0/XLSR architectures which have been proven to perform well on a variety of speech-related downstream tasks. We introduce a simple-to-follow recipe aligned to the SpeechBrain toolkit for accent classification based on Common Voice 7.0 (English) and Common Voice 11.0 (Italian, German, and Spanish). Furthermore, we establish new state-of-the-art for English accent classification with as high as 95% accuracy. We also study the internal categorization of the Wav2Vev 2.0 embeddings through t-SNE, noting that there is a level of clustering based on phonological similarity. 


This repository provides all the necessary tools to perform accent identification from speech recordings with [SpeechBrain](https://github.com/speechbrain/speechbrain).
The system uses a model pretrained on the CommonAccent dataset in Spanish (6 accents). This system is based on the CommonLanguage Recipe located here: https://github.com/speechbrain/speechbrain/tree/develop/recipes/CommonLanguage


The provided system can recognize the following 6 accents from short speech recordings in Spanish (ES):

```
- ESPANA SUR PENINSULAR - ANDALUCIA EXTREMADURA MURCIA
- MEXICO
- ANDINOPACIFICO COLOMBIA PERU ECUADOR OESTE DE BOLIVIA Y VENEZUELA ANDINA
- CARIBE CUBA VENEZUELA PUERTO RICO REPUBLICA DOMINICANA PANAMA COLOMBIA CARIBENA MEXICO CARIBENO COSTA DEL GOLFO DE MEXICO
- RIOPLATENSE ARGENTINA URUGUAY ESTE DE BOLIVIA PARAGUAY
- CHILENO CHILE CUYO
```

<a href="https://github.com/JuanPZuluaga/accent-recog-slt2022"> <img alt="GitHub" src="https://img.shields.io/badge/GitHub-Open%20source-green"> </a> Github repository link: https://github.com/JuanPZuluaga/accent-recog-slt2022


**NOTE**: due to incompatibility with the model and the current SpeechBrain interfaces, we cannot offer the Inference API. Please, follow the steps in **"Perform Accent Identification from Speech Recordings"** to use this Spanish Accent ID model.

For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The given model performance on the test set is:

| Release (dd/mm/yyyy) | Accuracy (%)
|:-------------:|:--------------:|
| 01-08-2023 (this model) | 68.5 | 


## Pipeline description
This system is composed of a fine-tuned XLSR model coupled with statistical pooling. A classifier, trained with NLL Loss, is applied on top of that.

The system is trained with recordings sampled at 16kHz (single channel).
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*.

## Install SpeechBrain

First of all, please install SpeechBrain with the following command:

```
pip install speechbrain
```

Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).

### Perform Accent Identification from Speech Recordings

```python
import torchaudio
from speechbrain.pretrained.interfaces import foreign_class

classifier = foreign_class(source="Jzuluaga/accent-id-commonaccent_xlsr-es-spanish", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier")

# Cuban Accent Example
out_prob, score, index, text_lab = classifier.classify_file('Jzuluaga/accent-id-commonaccent_xlsr-es-spanish/data/mexico.wav')
print(text_lab)

# Caribbean Example
out_prob, score, index, text_lab = classifier.classify_file('Jzuluaga/accent-id-commonaccent_xlsr-es-spanish/data/caribe-cuba-colombia.wav')
print(text_lab)
```

### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

### Training

The model was trained with SpeechBrain.

To train it from scratch follow these steps:

1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```

2. Install it:
```bash
cd speechbrain
pip install -r requirements.txt
pip install -e .
```

3. Clone our repository in https://github.com/JuanPZuluaga/accent-recog-slt2022:

```bash
git clone https://github.com/JuanPZuluaga/accent-recog-slt2022
cd CommonAccent/accent_id
python train_w2v2.py hparams/train_w2v2.yaml
```

You can find our training results (models, logs, etc) in this repository's `Files and versions` page.

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.



#### Cite our work: CommonAccent

If you find useful this work, please cite our work as: 

```
@article{zuluaga2023commonaccent,
  title={CommonAccent: Exploring Large Acoustic Pretrained Models for Accent Classification Based on Common Voice},
  author={Zuluaga-Gomez, Juan and Ahmed, Sara and Visockas, Danielius and Subakan, Cem},
  journal={Interspeech 2023},
  url={https://arxiv.org/abs/2305.18283},
  year={2023}
}
```

#### Cite XLSR model

```@article{conneau2020unsupervised,
  title={Unsupervised cross-lingual representation learning for speech recognition},
  author={Conneau, Alexis and Baevski, Alexei and Collobert, Ronan and Mohamed, Abdelrahman and Auli, Michael},
  journal={arXiv preprint arXiv:2006.13979},
  year={2020}
}
```


# **Cite SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.


```bibtex
@misc{speechbrain,
  title={{SpeechBrain}: A General-Purpose Speech Toolkit},
  author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
  year={2021},
  eprint={2106.04624},
  archivePrefix={arXiv},
  primaryClass={eess.AS},
  note={arXiv:2106.04624}
}
```