--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-eng results: [] --- # speaker-segmentation-fine-tuned-callhome-eng This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome eng dataset. It achieves the following results on the evaluation set: - Loss: 0.4607 - Der: 0.1815 - False Alarm: 0.0596 - Missed Detection: 0.0708 - Confusion: 0.0511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.426 | 1.0 | 362 | 0.4667 | 0.1875 | 0.0549 | 0.0784 | 0.0542 | | 0.392 | 2.0 | 724 | 0.4678 | 0.1852 | 0.0594 | 0.0721 | 0.0536 | | 0.3722 | 3.0 | 1086 | 0.4561 | 0.1801 | 0.0578 | 0.0714 | 0.0509 | | 0.351 | 4.0 | 1448 | 0.4565 | 0.1810 | 0.0597 | 0.0699 | 0.0515 | | 0.3493 | 5.0 | 1810 | 0.4607 | 0.1815 | 0.0596 | 0.0708 | 0.0511 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1