Image Classification
ONNX
File size: 1,524 Bytes
cea17bf
278c74f
cea17bf
 
 
 
 
 
 
 
 
 
 
 
 
02c6e46
 
cea17bf
 
 
 
 
 
 
278c74f
cea17bf
 
 
 
278c74f
cea17bf
 
 
 
 
278c74f
cea17bf
 
 
 
 
 
 
a009593
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
license: apache-2.0
datasets:
- ILSVRC/imagenet-1k
pipeline_tag: image-classification
---

# Introduction

This repository stores the model for Efficientnet-b0, compatible with Kalray's neural network API. </br>
Please see www.github.com/kalray/kann-models-zoo for details and proper usage. </br>
Please see https://huggingface.co/docs/transformers/main/en/model_doc/efficientnet for Efficientnet model description. </br>

# Contents

- ONNX: efficientNet-b0.onnx
- Quantized ONNX (INT8): efficientNet-b0-q.onnx

# Lecture note reference

- EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, https://arxiv.org/pdf/1905.11946

# Repository or links references

- [PyTorch | TorchVision](https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b0.html#torchvision.models.efficientnet_b0)

BibTeX entry and citation info
```
@article{DBLP:journals/corr/abs-1905-11946,
  author       = {Mingxing Tan and Quoc V. Le},
  title        = {EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks},
  journal      = {CoRR},
  volume       = {abs/1905.11946},
  year         = {2019},
  url          = {http://arxiv.org/abs/1905.11946},
  eprinttype   = {arXiv},
  eprint       = {1905.11946},
  timestamp    = {Mon, 03 Jun 2019 13:42:33 +0200},
  biburl       = {https://dblp.org/rec/journals/corr/abs-1905-11946.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
```

Authors: 
+ qmuller@kalrayinc.com
+ nbouberbachene@kalrayinc.com