Image Classification
ONNX
File size: 1,681 Bytes
bcf7893
c64d3d9
bcf7893
 
 
 
 
 
 
 
 
 
 
 
 
 
c64d3d9
bcf7893
 
 
 
 
 
 
391421e
bcf7893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c64d3d9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
license: apache-2.0
datasets:
- ILSVRC/imagenet-1k
pipeline_tag: image-classification
---

# Introduction

This repository stores the model for Mobilenet-v2, compatible with Kalray's neural network API. </br>
Please see www.github.com/kalray/kann-models-zoo for details and proper usage. </br>
Please see https://huggingface.co/docs/transformers/main/en/model_doc/mobilenet_v2 for Mobilenet-v2 model description. </br>

# Contents

- ONNX:   mobilenetv2.onnx
- Quantized ONNX (INT8): mobilenetv2-q.onnx

# Lecture note reference

- MobileNetV2: Inverted Residuals and Linear Bottlenecks, https://arxiv.org/pdf/1801.04381

# Repository or links references

- [PyTorch | TorchVision](https://pytorch.org/vision/stable/models/generated/torchvision.models.mobilenet_v2.html#torchvision.models.mobilenet_v2)

BibTeX entry and citation info
```
@article{DBLP:journals/corr/abs-1801-04381,
  author       = {Mark Sandler and
                  Andrew G. Howard and
                  Menglong Zhu and
                  Andrey Zhmoginov and
                  Liang{-}Chieh Chen},
  title        = {Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification,
                  Detection and Segmentation},
  journal      = {CoRR},
  volume       = {abs/1801.04381},
  year         = {2018},
  url          = {http://arxiv.org/abs/1801.04381},
  eprinttype    = {arXiv},
  eprint       = {1801.04381},
  timestamp    = {Tue, 12 Jan 2021 15:30:06 +0100},
  biburl       = {https://dblp.org/rec/journals/corr/abs-1801-04381.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
```

Authors:
+ qmuller@kalrayinc.com
+ nbouberbachene@kalrayinc.com