--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.921011931064958 - name: Recall type: recall value: 0.93265465935787 - name: F1 type: f1 value: 0.9267967316991829 - name: Accuracy type: accuracy value: 0.982826822565015 --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0610 - Precision: 0.9210 - Recall: 0.9327 - F1: 0.9268 - Accuracy: 0.9828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.248 | 1.0 | 878 | 0.0676 | 0.9021 | 0.9205 | 0.9112 | 0.9805 | | 0.0508 | 2.0 | 1756 | 0.0614 | 0.9208 | 0.9289 | 0.9248 | 0.9825 | | 0.0308 | 3.0 | 2634 | 0.0610 | 0.9210 | 0.9327 | 0.9268 | 0.9828 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2+cpu - Datasets 2.1.0 - Tokenizers 0.15.1