OssamaLafhel
commited on
Commit
•
3e86372
1
Parent(s):
f30c581
Upload 3 files
Browse files- gpt-j-6b-8-bit.py +265 -0
- handler.py +179 -0
- requirements.txt +8 -0
gpt-j-6b-8-bit.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
finetune-gpt-j-6B-8bit.ipynb
|
4 |
+
https://colab.research.google.com/drive/1ft6wQU0BhqG5PRlwgaZJv2VukKKjU4Es
|
5 |
+
### Fine-tuning 6-Billion GPT-J in colab with LoRA and 8-bit compression
|
6 |
+
(https://huggingface.co/EleutherAI/gpt-j-6B) with limited memory. A
|
7 |
+
https://huggingface.co/hivemind/gpt-j-6B-8bit)
|
8 |
+
This notebook is a proof of concept for fine-tuning
|
9 |
+
[GPT-J-6B](https://huggingface.co/EleutherAI/gpt-j-6B) with limited memory.
|
10 |
+
A detailed explanation of how it works can be found in [this model card]
|
11 |
+
(https://huggingface.co/hivemind/gpt-j-6B-8bit).
|
12 |
+
"""
|
13 |
+
|
14 |
+
from loguru import logger
|
15 |
+
import transformers
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch import nn
|
19 |
+
from torch.cuda.amp import custom_fwd, custom_bwd
|
20 |
+
from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise
|
21 |
+
from tqdm.auto import tqdm
|
22 |
+
from datasets import load_dataset
|
23 |
+
from bitsandbytes.optim import Adam8bit
|
24 |
+
import time, os
|
25 |
+
|
26 |
+
# ---------------------> Converting the model to 8 bits <------------------- #
|
27 |
+
"""
|
28 |
+
We convert EleutherAI's GPT-J-6B model to 8 bits using facebook's [bitsandbytes](https://github.com/facebookresearch/bitsandbytes) library.
|
29 |
+
This reduces the model's size from 20Gb down to just 6Gb.
|
30 |
+
Note that we don't convert linear layer biases to 8 bit as they take up less that 1% of the model's weight anyway.
|
31 |
+
"""
|
32 |
+
|
33 |
+
class FrozenBNBLinear(nn.Module):
|
34 |
+
def __init__(self, weight, absmax, code, bias=None):
|
35 |
+
assert isinstance(bias, nn.Parameter) or bias is None
|
36 |
+
super().__init__()
|
37 |
+
self.out_features, self.in_features = weight.shape
|
38 |
+
self.register_buffer("weight", weight.requires_grad_(False))
|
39 |
+
self.register_buffer("absmax", absmax.requires_grad_(False))
|
40 |
+
self.register_buffer("code", code.requires_grad_(False))
|
41 |
+
self.adapter = None
|
42 |
+
self.bias = bias
|
43 |
+
|
44 |
+
def forward(self, input):
|
45 |
+
output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias)
|
46 |
+
if self.adapter:
|
47 |
+
output = output + self.adapter(input)
|
48 |
+
return output
|
49 |
+
|
50 |
+
@classmethod
|
51 |
+
def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear":
|
52 |
+
weights_int8, state = quantize_blockise_lowmemory(linear.weight)
|
53 |
+
return cls(weights_int8, *state, linear.bias)
|
54 |
+
|
55 |
+
def __repr__(self):
|
56 |
+
return f"{self.__class__.__name__}({self.in_features}, {self.out_features})"
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
class DequantizeAndLinear(torch.autograd.Function):
|
61 |
+
@staticmethod
|
62 |
+
@custom_fwd
|
63 |
+
def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor,
|
64 |
+
absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor):
|
65 |
+
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
|
66 |
+
ctx.save_for_backward(input, weights_quantized, absmax, code)
|
67 |
+
ctx._has_bias = bias is not None
|
68 |
+
return F.linear(input, weights_deq, bias)
|
69 |
+
|
70 |
+
@staticmethod
|
71 |
+
@custom_bwd
|
72 |
+
def backward(ctx, grad_output: torch.Tensor):
|
73 |
+
assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3]
|
74 |
+
input, weights_quantized, absmax, code = ctx.saved_tensors
|
75 |
+
# grad_output: [*batch, out_features]
|
76 |
+
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
|
77 |
+
grad_input = grad_output @ weights_deq
|
78 |
+
grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None
|
79 |
+
return grad_input, None, None, None, grad_bias
|
80 |
+
|
81 |
+
|
82 |
+
class FrozenBNBEmbedding(nn.Module):
|
83 |
+
def __init__(self, weight, absmax, code):
|
84 |
+
super().__init__()
|
85 |
+
self.num_embeddings, self.embedding_dim = weight.shape
|
86 |
+
self.register_buffer("weight", weight.requires_grad_(False))
|
87 |
+
self.register_buffer("absmax", absmax.requires_grad_(False))
|
88 |
+
self.register_buffer("code", code.requires_grad_(False))
|
89 |
+
self.adapter = None
|
90 |
+
|
91 |
+
def forward(self, input, **kwargs):
|
92 |
+
with torch.no_grad():
|
93 |
+
# note: both quantuized weights and input indices are *not* differentiable
|
94 |
+
weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code)
|
95 |
+
output = F.embedding(input, weight_deq, **kwargs)
|
96 |
+
if self.adapter:
|
97 |
+
output += self.adapter(input)
|
98 |
+
return output
|
99 |
+
|
100 |
+
@classmethod
|
101 |
+
def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding":
|
102 |
+
weights_int8, state = quantize_blockise_lowmemory(embedding.weight)
|
103 |
+
return cls(weights_int8, *state)
|
104 |
+
|
105 |
+
def __repr__(self):
|
106 |
+
return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})"
|
107 |
+
|
108 |
+
def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20):
|
109 |
+
assert chunk_size % 4096 == 0
|
110 |
+
code = None
|
111 |
+
chunks = []
|
112 |
+
absmaxes = []
|
113 |
+
flat_tensor = matrix.view(-1)
|
114 |
+
for i in range((matrix.numel() - 1) // chunk_size + 1):
|
115 |
+
input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone()
|
116 |
+
quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code)
|
117 |
+
chunks.append(quantized_chunk)
|
118 |
+
absmaxes.append(absmax_chunk)
|
119 |
+
|
120 |
+
matrix_i8 = torch.cat(chunks).reshape_as(matrix)
|
121 |
+
absmax = torch.cat(absmaxes)
|
122 |
+
return matrix_i8, (absmax, code)
|
123 |
+
|
124 |
+
|
125 |
+
def convert_to_int8(model):
|
126 |
+
"""Convert linear and embedding modules to 8-bit with optional adapters"""
|
127 |
+
for module in list(model.modules()):
|
128 |
+
for name, child in module.named_children():
|
129 |
+
if isinstance(child, nn.Linear):
|
130 |
+
print(name, child)
|
131 |
+
setattr(
|
132 |
+
module,
|
133 |
+
name,
|
134 |
+
FrozenBNBLinear(
|
135 |
+
weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8),
|
136 |
+
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
|
137 |
+
code=torch.zeros(256),
|
138 |
+
bias=child.bias,
|
139 |
+
),
|
140 |
+
)
|
141 |
+
elif isinstance(child, nn.Embedding):
|
142 |
+
setattr(
|
143 |
+
module,
|
144 |
+
name,
|
145 |
+
FrozenBNBEmbedding(
|
146 |
+
weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8),
|
147 |
+
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
|
148 |
+
code=torch.zeros(256),
|
149 |
+
)
|
150 |
+
)
|
151 |
+
|
152 |
+
class GPTJBlock(transformers.models.gptj.modeling_gptj.GPTJBlock):
|
153 |
+
def __init__(self, config):
|
154 |
+
super().__init__(config)
|
155 |
+
|
156 |
+
convert_to_int8(self.attn)
|
157 |
+
convert_to_int8(self.mlp)
|
158 |
+
|
159 |
+
|
160 |
+
class GPTJModel(transformers.models.gptj.modeling_gptj.GPTJModel):
|
161 |
+
def __init__(self, config):
|
162 |
+
super().__init__(config)
|
163 |
+
convert_to_int8(self)
|
164 |
+
|
165 |
+
|
166 |
+
class GPTJForCausalLM(transformers.models.gptj.modeling_gptj.GPTJForCausalLM):
|
167 |
+
def __init__(self, config):
|
168 |
+
super().__init__(config)
|
169 |
+
convert_to_int8(self)
|
170 |
+
|
171 |
+
|
172 |
+
transformers.models.gptj.modeling_gptj.GPTJBlock = GPTJBlock # monkey-patch GPT-J
|
173 |
+
|
174 |
+
# ---------------------> Loading EleutherAI/gpt-j-6B config and tokenizer <------------------- #
|
175 |
+
config = transformers.GPTJConfig.from_pretrained("EleutherAI/gpt-j-6B")
|
176 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
|
177 |
+
|
178 |
+
# ---------------------> Downloading gpt-j-6B-8bit model from huggingface <------------------- #
|
179 |
+
#gpt = GPTJForCausalLM.from_pretrained("hivemind/gpt-j-6B-8bit")
|
180 |
+
|
181 |
+
# ----------------> Saving gpt-j-6B-8bit model to server <-----------------#
|
182 |
+
#save_dir = "./saved_models_gpt-j-6B-8bit/gpt-j-6B"
|
183 |
+
#gpt.save_pretrained(save_dir)
|
184 |
+
#logger.info("Saved model to {}".format(save_dir))
|
185 |
+
|
186 |
+
# ---------------------> Loading saved gpt-j-6B-8bit model <------------------- #
|
187 |
+
gpt = GPTJForCausalLM.from_pretrained("./saved_models_gpt-j-6B-8bit/gpt-j-6B")
|
188 |
+
|
189 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
190 |
+
gpt.to(device)
|
191 |
+
|
192 |
+
# ---------------------> Text generation example <------------------- #
|
193 |
+
prompt = tokenizer("A cat sat on a mat", return_tensors='pt')
|
194 |
+
prompt = {key: value.to(device) for key, value in prompt.items()}
|
195 |
+
out = gpt.generate(**prompt, min_length=128, max_length=128, do_sample=True)
|
196 |
+
logger.info("Generated text: {}".format(tokenizer.decode(out[0])))
|
197 |
+
|
198 |
+
|
199 |
+
# ---------------------> LoRA fine-tuning example <------------------- #
|
200 |
+
|
201 |
+
def add_adapters(model, adapter_dim=16):
|
202 |
+
assert adapter_dim > 0
|
203 |
+
|
204 |
+
for module in model.modules():
|
205 |
+
if isinstance(module, FrozenBNBLinear):
|
206 |
+
module.adapter = nn.Sequential(
|
207 |
+
nn.Linear(module.in_features, adapter_dim, bias=False),
|
208 |
+
nn.Linear(adapter_dim, module.out_features, bias=False),
|
209 |
+
)
|
210 |
+
nn.init.zeros_(module.adapter[1].weight)
|
211 |
+
elif isinstance(module, FrozenBNBEmbedding):
|
212 |
+
module.adapter = nn.Sequential(
|
213 |
+
nn.Embedding(module.num_embeddings, adapter_dim),
|
214 |
+
nn.Linear(adapter_dim, module.embedding_dim, bias=False),
|
215 |
+
)
|
216 |
+
nn.init.zeros_(module.adapter[1].weight)
|
217 |
+
|
218 |
+
add_adapters(gpt)
|
219 |
+
gpt.to(device)
|
220 |
+
gpt.gradient_checkpointing_enable()
|
221 |
+
|
222 |
+
# example dataset
|
223 |
+
data_files = {"train": "data.jsonl"}
|
224 |
+
dataset = load_dataset('nomic-ai/gpt4all_prompt_generations_with_p3', data_files=data_files)
|
225 |
+
prompt_response_separator = " response: "
|
226 |
+
|
227 |
+
def concatenate_prompt_response(row):
|
228 |
+
row["text"] = "prompt: " + row["prompt"] + prompt_response_separator + row["response"]
|
229 |
+
return row
|
230 |
+
|
231 |
+
dataset = dataset.map(concatenate_prompt_response, remove_columns=["prompt", "response"])
|
232 |
+
|
233 |
+
# custom dataset
|
234 |
+
#dataset = load_dataset('text', data_files={'train': ['article-1.txt', 'article-2.txt'], 'test': ['article-3.txt', 'article-4.txt']})
|
235 |
+
|
236 |
+
optimizer = Adam8bit(gpt.parameters(), lr=1e-5)
|
237 |
+
|
238 |
+
# Set the model to training mode
|
239 |
+
start = time.time()
|
240 |
+
|
241 |
+
# Training loop
|
242 |
+
with torch.cuda.amp.autocast():
|
243 |
+
for row in tqdm(dataset["train"]):
|
244 |
+
if len(row["text"]) <= 1:
|
245 |
+
continue
|
246 |
+
batch = tokenizer(row["text"], truncation=True, max_length=128, return_tensors='pt')
|
247 |
+
batch = {k: v.cuda() for k, v in batch.items()}
|
248 |
+
out = gpt.forward(**batch,)
|
249 |
+
loss = F.cross_entropy(out.logits[:, :-1, :].flatten(0, -2), batch['input_ids'][:, 1:].flatten(),
|
250 |
+
reduction='mean')
|
251 |
+
print(loss)
|
252 |
+
loss.backward()
|
253 |
+
optimizer.step()
|
254 |
+
optimizer.zero_grad()
|
255 |
+
|
256 |
+
logger.info("Finished fine-tuning in {}".format(time.time() - start))
|
257 |
+
|
258 |
+
# --------------> Saving fine-tuned model <-----------------#
|
259 |
+
try:
|
260 |
+
save_dir = "./finetuned_gpt-j-8_bit"
|
261 |
+
os.makedirs(save_dir)
|
262 |
+
gpt.save_pretrained(save_dir)
|
263 |
+
except Exception as e:
|
264 |
+
#print("Error saving model: ", e)
|
265 |
+
logger.info("Error saving model: {}".format(e))
|
handler.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import transformers
|
2 |
+
from transformers import pipeline
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch.cuda.amp import custom_fwd, custom_bwd
|
7 |
+
from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise
|
8 |
+
from typing import Dict, List, Any
|
9 |
+
|
10 |
+
|
11 |
+
# ---------------------> Converting the model to 8 bits <------------------- #
|
12 |
+
|
13 |
+
class FrozenBNBLinear(nn.Module):
|
14 |
+
def __init__(self, weight, absmax, code, bias=None):
|
15 |
+
assert isinstance(bias, nn.Parameter) or bias is None
|
16 |
+
super().__init__()
|
17 |
+
self.out_features, self.in_features = weight.shape
|
18 |
+
self.register_buffer("weight", weight.requires_grad_(False))
|
19 |
+
self.register_buffer("absmax", absmax.requires_grad_(False))
|
20 |
+
self.register_buffer("code", code.requires_grad_(False))
|
21 |
+
self.adapter = None
|
22 |
+
self.bias = bias
|
23 |
+
|
24 |
+
def forward(self, input):
|
25 |
+
output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias)
|
26 |
+
if self.adapter:
|
27 |
+
output += self.adapter(input)
|
28 |
+
return output
|
29 |
+
|
30 |
+
@classmethod
|
31 |
+
def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear":
|
32 |
+
weights_int8, state = quantize_blockise_lowmemory(linear.weight)
|
33 |
+
return cls(weights_int8, *state, linear.bias)
|
34 |
+
|
35 |
+
def __repr__(self):
|
36 |
+
return f"{self.__class__.__name__}({self.in_features}, {self.out_features})"
|
37 |
+
|
38 |
+
|
39 |
+
class DequantizeAndLinear(torch.autograd.Function):
|
40 |
+
@staticmethod
|
41 |
+
@custom_fwd
|
42 |
+
def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor,
|
43 |
+
absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor):
|
44 |
+
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
|
45 |
+
ctx.save_for_backward(input, weights_quantized, absmax, code)
|
46 |
+
ctx._has_bias = bias is not None
|
47 |
+
return F.linear(input, weights_deq, bias)
|
48 |
+
|
49 |
+
@staticmethod
|
50 |
+
@custom_bwd
|
51 |
+
def backward(ctx, grad_output: torch.Tensor):
|
52 |
+
assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3]
|
53 |
+
input, weights_quantized, absmax, code = ctx.saved_tensors
|
54 |
+
# grad_output: [*batch, out_features]
|
55 |
+
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
|
56 |
+
grad_input = grad_output @ weights_deq
|
57 |
+
grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None
|
58 |
+
return grad_input, None, None, None, grad_bias
|
59 |
+
|
60 |
+
|
61 |
+
class FrozenBNBEmbedding(nn.Module):
|
62 |
+
def __init__(self, weight, absmax, code):
|
63 |
+
super().__init__()
|
64 |
+
self.num_embeddings, self.embedding_dim = weight.shape
|
65 |
+
self.register_buffer("weight", weight.requires_grad_(False))
|
66 |
+
self.register_buffer("absmax", absmax.requires_grad_(False))
|
67 |
+
self.register_buffer("code", code.requires_grad_(False))
|
68 |
+
self.adapter = None
|
69 |
+
|
70 |
+
def forward(self, input, **kwargs):
|
71 |
+
with torch.no_grad():
|
72 |
+
# note: both quantuized weights and input indices are *not* differentiable
|
73 |
+
weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code)
|
74 |
+
output = F.embedding(input, weight_deq, **kwargs)
|
75 |
+
if self.adapter:
|
76 |
+
output += self.adapter(input)
|
77 |
+
return output
|
78 |
+
|
79 |
+
@classmethod
|
80 |
+
def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding":
|
81 |
+
weights_int8, state = quantize_blockise_lowmemory(embedding.weight)
|
82 |
+
return cls(weights_int8, *state)
|
83 |
+
|
84 |
+
def __repr__(self):
|
85 |
+
return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})"
|
86 |
+
|
87 |
+
|
88 |
+
def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20):
|
89 |
+
assert chunk_size % 4096 == 0
|
90 |
+
code = None
|
91 |
+
chunks = []
|
92 |
+
absmaxes = []
|
93 |
+
flat_tensor = matrix.view(-1)
|
94 |
+
for i in range((matrix.numel() - 1) // chunk_size + 1):
|
95 |
+
input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone()
|
96 |
+
quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code)
|
97 |
+
chunks.append(quantized_chunk)
|
98 |
+
absmaxes.append(absmax_chunk)
|
99 |
+
|
100 |
+
matrix_i8 = torch.cat(chunks).reshape_as(matrix)
|
101 |
+
absmax = torch.cat(absmaxes)
|
102 |
+
return matrix_i8, (absmax, code)
|
103 |
+
|
104 |
+
|
105 |
+
def convert_to_int8(model):
|
106 |
+
"""Convert linear and embedding modules to 8-bit with optional adapters"""
|
107 |
+
for module in list(model.modules()):
|
108 |
+
for name, child in module.named_children():
|
109 |
+
if isinstance(child, nn.Linear):
|
110 |
+
print(name, child)
|
111 |
+
setattr(
|
112 |
+
module,
|
113 |
+
name,
|
114 |
+
FrozenBNBLinear(
|
115 |
+
weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8),
|
116 |
+
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
|
117 |
+
code=torch.zeros(256),
|
118 |
+
bias=child.bias,
|
119 |
+
),
|
120 |
+
)
|
121 |
+
elif isinstance(child, nn.Embedding):
|
122 |
+
setattr(
|
123 |
+
module,
|
124 |
+
name,
|
125 |
+
FrozenBNBEmbedding(
|
126 |
+
weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8),
|
127 |
+
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
|
128 |
+
code=torch.zeros(256),
|
129 |
+
)
|
130 |
+
)
|
131 |
+
|
132 |
+
|
133 |
+
class GPTJBlock(transformers.models.gptj.modeling_gptj.GPTJBlock):
|
134 |
+
def __init__(self, config):
|
135 |
+
super().__init__(config)
|
136 |
+
|
137 |
+
convert_to_int8(self.attn)
|
138 |
+
convert_to_int8(self.mlp)
|
139 |
+
|
140 |
+
|
141 |
+
class GPTJModel(transformers.models.gptj.modeling_gptj.GPTJModel):
|
142 |
+
def __init__(self, config):
|
143 |
+
super().__init__(config)
|
144 |
+
convert_to_int8(self)
|
145 |
+
|
146 |
+
|
147 |
+
class GPTJForCausalLM(transformers.models.gptj.modeling_gptj.GPTJForCausalLM):
|
148 |
+
def __init__(self, config):
|
149 |
+
super().__init__(config)
|
150 |
+
convert_to_int8(self)
|
151 |
+
|
152 |
+
|
153 |
+
transformers.models.gptj.modeling_gptj.GPTJBlock = GPTJBlock # monkey-patch GPT-J
|
154 |
+
|
155 |
+
|
156 |
+
# -----------------------------------------> API <---------------------------------------
|
157 |
+
|
158 |
+
|
159 |
+
class EndpointHandler:
|
160 |
+
def __init__(self, path=""):
|
161 |
+
# load the model
|
162 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
|
163 |
+
model = GPTJForCausalLM.from_pretrained(path, low_cpu_mem_usage=True)
|
164 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
165 |
+
model.to(device)
|
166 |
+
# create inference pipeline
|
167 |
+
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device)
|
168 |
+
|
169 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
170 |
+
inputs = data.pop("inputs", data)
|
171 |
+
parameters = data.pop("parameters", None)
|
172 |
+
|
173 |
+
# pass inputs with all kwargs in data
|
174 |
+
if parameters is not None:
|
175 |
+
prediction = self.pipeline(inputs, **parameters)
|
176 |
+
else:
|
177 |
+
prediction = self.pipeline(inputs)
|
178 |
+
# postprocess the prediction
|
179 |
+
return prediction
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.95.0
|
2 |
+
uvicorn==0.21.1
|
3 |
+
transformers==4.27.4
|
4 |
+
torch==2.0.0
|
5 |
+
requests==2.28.2
|
6 |
+
pydantic~=1.10.7
|
7 |
+
loguru==0.5.3
|
8 |
+
bitsandbytes-cuda111
|