import transformers from transformers import pipeline import torch from torch import nn import torch.nn.functional as F from torch.cuda.amp import custom_fwd, custom_bwd from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise from typing import Dict, List, Any # ---------------------> Converting the model to 8 bits <------------------- # class FrozenBNBLinear(nn.Module): def __init__(self, weight, absmax, code, bias=None): assert isinstance(bias, nn.Parameter) or bias is None super().__init__() self.out_features, self.in_features = weight.shape self.register_buffer("weight", weight.requires_grad_(False)) self.register_buffer("absmax", absmax.requires_grad_(False)) self.register_buffer("code", code.requires_grad_(False)) self.adapter = None self.bias = bias def forward(self, input): output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias) if self.adapter: output += self.adapter(input) return output @classmethod def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear": weights_int8, state = quantize_blockise_lowmemory(linear.weight) return cls(weights_int8, *state, linear.bias) def __repr__(self): return f"{self.__class__.__name__}({self.in_features}, {self.out_features})" class DequantizeAndLinear(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor, absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor): weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code) ctx.save_for_backward(input, weights_quantized, absmax, code) ctx._has_bias = bias is not None return F.linear(input, weights_deq, bias) @staticmethod @custom_bwd def backward(ctx, grad_output: torch.Tensor): assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3] input, weights_quantized, absmax, code = ctx.saved_tensors # grad_output: [*batch, out_features] weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code) grad_input = grad_output @ weights_deq grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None return grad_input, None, None, None, grad_bias class FrozenBNBEmbedding(nn.Module): def __init__(self, weight, absmax, code): super().__init__() self.num_embeddings, self.embedding_dim = weight.shape self.register_buffer("weight", weight.requires_grad_(False)) self.register_buffer("absmax", absmax.requires_grad_(False)) self.register_buffer("code", code.requires_grad_(False)) self.adapter = None def forward(self, input, **kwargs): with torch.no_grad(): # note: both quantuized weights and input indices are *not* differentiable weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code) output = F.embedding(input, weight_deq, **kwargs) if self.adapter: output += self.adapter(input) return output @classmethod def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding": weights_int8, state = quantize_blockise_lowmemory(embedding.weight) return cls(weights_int8, *state) def __repr__(self): return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})" def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20): assert chunk_size % 4096 == 0 code = None chunks = [] absmaxes = [] flat_tensor = matrix.view(-1) for i in range((matrix.numel() - 1) // chunk_size + 1): input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone() quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code) chunks.append(quantized_chunk) absmaxes.append(absmax_chunk) matrix_i8 = torch.cat(chunks).reshape_as(matrix) absmax = torch.cat(absmaxes) return matrix_i8, (absmax, code) def convert_to_int8(model): """Convert linear and embedding modules to 8-bit with optional adapters""" for module in list(model.modules()): for name, child in module.named_children(): if isinstance(child, nn.Linear): print(name, child) setattr( module, name, FrozenBNBLinear( weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8), absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1), code=torch.zeros(256), bias=child.bias, ), ) elif isinstance(child, nn.Embedding): setattr( module, name, FrozenBNBEmbedding( weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8), absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1), code=torch.zeros(256), ) ) class GPTJBlock(transformers.models.gptj.modeling_gptj.GPTJBlock): def __init__(self, config): super().__init__(config) convert_to_int8(self.attn) convert_to_int8(self.mlp) class GPTJModel(transformers.models.gptj.modeling_gptj.GPTJModel): def __init__(self, config): super().__init__(config) convert_to_int8(self) class GPTJForCausalLM(transformers.models.gptj.modeling_gptj.GPTJForCausalLM): def __init__(self, config): super().__init__(config) convert_to_int8(self) transformers.models.gptj.modeling_gptj.GPTJBlock = GPTJBlock # monkey-patch GPT-J # -----------------------------------------> API <--------------------------------------- class EndpointHandler: def __init__(self, path=""): # load the model tokenizer = transformers.AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") model = GPTJForCausalLM.from_pretrained(path, low_cpu_mem_usage=True) # check for GPU device = 0 if torch.cuda.is_available() else -1 model.to(device) # create inference pipeline self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) # pass inputs with all kwargs in data if parameters is not None: prediction = self.pipeline(inputs, **parameters) else: prediction = self.pipeline(inputs) # postprocess the prediction return prediction