--- license: cc-by-nc-nd-4.0 tags: - not-for-all-audiences --- # PantheraMax-L3-RP-TestProbe-4-4x8B PantheraMax-L3-RP-TestProbe-4-4x8B is a Mixture of Experts (MoE) made with the following models: * [v000000/L3-8B-Poppy-Moonfall-C](https://huggingface.co/v000000/L3-8B-Poppy-Moonfall-C) * [Alsebay/L3-test-2](https://huggingface.co/Alsebay/L3-test-2) * [merge3](https://huggingface.co/merge3) * [Nitral-AI/Hathor_RP-v.01-L3-8B](https://huggingface.co/Nitral-AI/Hathor_RP-v.01-L3-8B) ## 🧩 Configuration ```yaml base_model: failspy/Meta-Llama-3-8B-Instruct-abliterated-v3 gate_mode: random dtype: bfloat16 experts_per_token: 4 experts: - source_model: v000000/L3-8B-Poppy-Moonfall-C positive_prompts: [] - source_model: Alsebay/L3-test-2 positive_prompts: - "Imagine" - "Create" - "Envision" - "Fantasize" - "Invent" - "Narrate" - "Plot" - "Portray" - "Storytell" - "Visualize" - "Describe" - "Develop" - "Forge" - "Craft" - "Conceptualize" - "Dream" - "Concoct" - "Characterize" negative_prompts: - "Analyze" - "Critique" - "Dissect" - "Explain" - "Clarify" - "Interpret" - source_model: merge3 positive_prompts: [] - source_model: Nitral-AI/Hathor_RP-v.01-L3-8B positive_prompts: [] ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Kaoeiri/PantheraMax-L3-RP-TestProbe-4-4x8B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.9, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```