KaraAgroAI commited on
Commit
79b5216
1 Parent(s): 665459b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md CHANGED
@@ -1,3 +1,69 @@
1
  ---
2
  license: cc-by-sa-4.0
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-sa-4.0
3
+ datasets:
4
+ - KaraAgroAI/CADI-AI
5
+ language:
6
+ - en
7
+ metrics:
8
+ - mape
9
+ pipeline_tag: object-detection
10
+ tags:
11
+ - object detection
12
+ - vision
13
  ---
14
+
15
+
16
+ ## Cashew Disease Identification with AI (CADI-AI) Model
17
+
18
+ ### Model Description
19
+
20
+ Object detection model trained using YOLO v5x. The model was pre-trained on the Cashew Disease Identification with AI (CADI-AI) train set (3788 images) at a resolution of 640x640 pixels.
21
+ CADI-AI dataset is available in hugging face dataset hub
22
+
23
+ ## Intended uses & limitations
24
+
25
+ You can use the raw model for object detection on cashew images.
26
+
27
+ ### How to use
28
+
29
+ - Load model and perform prediction:
30
+
31
+ ```python
32
+ import torch
33
+
34
+ # load model
35
+ model = torch.hub.load('ultralytics/yolov5', 'KaraAgroAI/CADI-AI')
36
+
37
+ # Images
38
+ img = ['/path/to/CADI-AI-image.jpg']# batch of images
39
+
40
+ # set model parameters
41
+ model.conf = 0.20 # NMS confidence threshold
42
+
43
+ # perform inference
44
+ results = model(img, size=640)
45
+
46
+ # Results
47
+ results.print()
48
+
49
+ results.xyxy[0] # img1 predictions (tensor)
50
+ results.pandas().xyxy[0] # img1 predictions (pandas)
51
+
52
+ # parse results
53
+ predictions = results.pred[0]
54
+ boxes = predictions[:, :4] # x1, y1, x2, y2
55
+ scores = predictions[:, 4]
56
+ categories = predictions[:, 5]
57
+
58
+ # show detection bounding boxes on image
59
+ results.show()
60
+
61
+ # save results into "results/" folder
62
+ results.save(save_dir='results/')
63
+ ```
64
+
65
+ - Finetune the model on your custom dataset:
66
+
67
+ ```bash
68
+ yolov5 train --data data.yaml --img 640 --batch 16 --weights KaraAgroAI/CADI-AI --epochs 10
69
+ ```