Keenan5755 commited on
Commit
5d36dcb
·
1 Parent(s): bb57bf6

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.20 +/- 0.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46677a7f77624fcf908643de3c67fe26f0d53a326900dc8b25af89d4a8db1ea7
3
+ size 106832
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ce7b11a7520>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7ce7b118c300>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1696296332970057058,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAlcZpvpFL4r6H74m84bXJvffg0z44DWO+bwMXv8P+0j4e6KY+cEsAQPqgcb2ALiDAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAh9OMvwpxl7/JKRI83GudvxRdtT/TcNe+xUx0v2IPlT8TktM/RunUP/Zyqb3x4YS+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACVxmm+kUvivofvibzh5mS/QVrcv3mhDr/htcm99+DTPjgNY763Hu2/x9fTPyMls79vAxe/w/7SPh7opj7E2EK/AgDVP34RYD9wSwBA+qBxvYAuIMDf9lI/HX2dvzm9kz6UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-0.2282966 -0.44198278 -0.01683785]\n [-0.09849144 0.41382572 -0.22173011]\n [-0.58989614 0.41209993 0.32598966]\n [ 2.0046043 -0.05899141 -2.5028381 ]]",
34
+ "desired_goal": "[[-1.1002053 -1.1831372 0.0089211 ]\n [-1.2298541 1.416903 -0.42078266]\n [-0.9542964 1.164532 1.6528953 ]\n [ 1.6633689 -0.0827388 -0.2595363 ]]",
35
+ "observation": "[[-0.2282966 -0.44198278 -0.01683785 -0.89414793 -1.7215043 -0.5571514 ]\n [-0.09849144 0.41382572 -0.22173011 -1.8524998 1.6550225 -1.3995708 ]\n [-0.58989614 0.41209993 0.32598966 -0.7611201 1.6640627 0.8752669 ]\n [ 2.0046043 -0.05899141 -2.5028381 0.82407945 -1.2303807 0.28855303]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGJWHvSJpyL0RD609U1f6vKwWuj35x5k9AdphPHS+370h05c+6BN+vd+nyD0Upfc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.06620234 -0.09785677 0.08450139]\n [-0.03055922 0.09086356 0.07508845]\n [ 0.01378489 -0.10924998 0.29653266]\n [-0.0620307 0.09797644 0.12092033]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv88TlDF6zE+MAWyUSwOMAXSUR0Ckf87OVxCIdX2UKGgGR7/OwA2hqTKUaAdLA2gIR0Ckf5UH6dlNdX2UKGgGR7+g5NoJzDGcaAdLAWgIR0Ckf9NJ4B3idX2UKGgGR7/FnW8RL9MsaAdLA2gIR0Ckf6M5XEIgdX2UKGgGR7/f22Xsw+MZaAdLBGgIR0Ckf2cLBsQ/dX2UKGgGR7/YMkhRqGlAaAdLBGgIR0CkfygCW/rTdX2UKGgGR7/JYEGJN0vHaAdLA2gIR0Ckf+HqeK8+dX2UKGgGR7+k2Hck+otMaAdLAWgIR0CkfyxGMGX5dX2UKGgGR7+3BnBciW3SaAdLAmgIR0Ckf+ph4MWodX2UKGgGR7/MOoYNy5qeaAdLA2gIR0Ckf7BczImxdX2UKGgGR7/NozN2TxG2aAdLA2gIR0Ckf3RF7UobdX2UKGgGR7/Bh86V+qioaAdLAmgIR0CkfzUdaMaTdX2UKGgGR7+YK6WgOBlMaAdLAWgIR0Ckf/FUhmoSdX2UKGgGR7+kG1QZXMhYaAdLAWgIR0Ckf7dTgl4UdX2UKGgGR7+9x3mmtQsPaAdLAmgIR0Ckfz/o7muDdX2UKGgGR7/D9Nvfj0cwaAdLA2gIR0Ckf4NrCWNWdX2UKGgGR7/FT1CgK4QSaAdLA2gIR0Ckf/4oAn2JdX2UKGgGR7/Sk7OmixmkaAdLA2gIR0Ckf8Qob4rSdX2UKGgGR7/R46fapPykaAdLA2gIR0Ckf0zI3irDdX2UKGgGR7+3NC7btZ3caAdLAmgIR0CkgAj9wWFfdX2UKGgGR7+4UZeiSJTEaAdLAmgIR0Ckf87yYoiLdX2UKGgGR7/WRplBhQWOaAdLBGgIR0Ckf5b349HMdX2UKGgGR7/CSJTER8MNaAdLAmgIR0Ckf1fdRBNVdX2UKGgGR7/BvCMxXXAeaAdLAmgIR0CkgBJlSS/1dX2UKGgGR7/OGkep4rz5aAdLA2gIR0Ckf95o4+8odX2UKGgGR7+3AAQxvegtaAdLAmgIR0Ckf6JaRp1zdX2UKGgGR7+2XqqwQlKLaAdLAmgIR0Ckf2NCRfWudX2UKGgGR7/OBBAv+OwQaAdLA2gIR0CkgCMotthvdX2UKGgGR7/EZEUj9n9OaAdLAmgIR0Ckf6zJQtSRdX2UKGgGR7+0aUA1ejVQaAdLAmgIR0Ckf23AmAskdX2UKGgGR7/TIg/1QIldaAdLA2gIR0Ckf+1wxWT5dX2UKGgGR7+0+zMRpUPyaAdLAmgIR0CkgCwGwA2idX2UKGgGR7+7cXWOIZZTaAdLAmgIR0Ckf3djPOY6dX2UKGgGR7+3xOLzf779aAdLAmgIR0CkgDUE5hjOdX2UKGgGR7/Vl18stkFwaAdLA2gIR0Ckf/rw4KhMdX2UKGgGR7/WYJ3PiT+vaAdLBGgIR0Ckf768QI2PdX2UKGgGR7/RzxPO6d1/aAdLA2gIR0Ckf4WRJVbSdX2UKGgGR7+6hVU+9rXUaAdLAmgIR0CkgAUqx1PndX2UKGgGR7/F+hoM8YAKaAdLA2gIR0CkgENOM2m6dX2UKGgGR7/I2Yv38GcGaAdLA2gIR0Ckf8zjebd8dX2UKGgGR7+4vcrRSgoPaAdLAmgIR0CkgA0SZjQRdX2UKGgGR7/VrBTGYKIBaAdLA2gIR0Ckf5G+CbtrdX2UKGgGR7+1tk4FRpDeaAdLAmgIR0CkgBditq59dX2UKGgGR7/dl8gIQe3haAdLBGgIR0CkgFXNcGC7dX2UKGgGR7/VhJiAlOXWaAdLBGgIR0Ckf99MTN+tdX2UKGgGR7/TmixmkFfRaAdLBGgIR0Ckf6QaJhvzdX2UKGgGR7/HASFoL5RCaAdLAmgIR0CkgF3rdFfBdX2UKGgGR7/R7W/ag261aAdLA2gIR0CkgCPnr6cidX2UKGgGR7/Adsi0OVgQaAdLAmgIR0Ckf+e9rXUZdX2UKGgGR7+j5GjKxLTQaAdLAWgIR0CkgGJTVDrrdX2UKGgGR7/HJOnEVFhHaAdLAmgIR0Ckf/JYT0xudX2UKGgGR7/PKji4rjHXaAdLA2gIR0CkgDKMm4RVdX2UKGgGR7+ZEDyOJcgRaAdLAWgIR0Ckf/a7ulXSdX2UKGgGR7/acMEzO5avaAdLBGgIR0Ckf7ejmCAddX2UKGgGR7+hKraM72csaAdLAWgIR0CkgDdBrvb5dX2UKGgGR7/ZbcXWOIZZaAdLBGgIR0CkgHWV3Ux3dX2UKGgGR7+7tiQT238XaAdLAmgIR0CkgH/fO2RadX2UKGgGR7/SACW/rSmZaAdLA2gIR0CkgEXbEgnudX2UKGgGR7/XKohpxm03aAdLBGgIR0Ckf8qwQlKLdX2UKGgGR7+oDHOryUcGaAdLAWgIR0CkgISlN1yOdX2UKGgGR7/ZexwAEMb4aAdLBWgIR0CkgA5Pdl/ZdX2UKGgGR7+7nr6ciGFjaAdLAmgIR0Ckf9MCcPOIdX2UKGgGR7/NsO5J9RaYaAdLA2gIR0CkgFKuKXOXdX2UKGgGR7+8TwlSjxkNaAdLAmgIR0CkgBaGHpKSdX2UKGgGR7+ldPci4axYaAdLAWgIR0Ckf9dsrNGFdX2UKGgGR7/Rtz0Yj0L/aAdLA2gIR0CkgJFKsdT6dX2UKGgGR7/BUe+23KB/aAdLAmgIR0CkgF003wTedX2UKGgGR7/CLFXJYDDCaAdLAmgIR0Ckf+HHeaa1dX2UKGgGR7/NBjWkJrtWaAdLA2gIR0CkgCT6i0v5dX2UKGgGR7/Rbi6xxDLKaAdLA2gIR0CkgJ9u5z5odX2UKGgGR7/MyjYZl4C7aAdLA2gIR0CkgGjpcHGCdX2UKGgGR7/Odtl7MPjGaAdLA2gIR0Ckf+2Dxsl+dX2UKGgGR7/BhIe5nUUgaAdLAmgIR0CkgKdQ40djdX2UKGgGR7/UqtozvZyuaAdLA2gIR0CkgDD5KvmpdX2UKGgGR7+3q6e5Fw1jaAdLAmgIR0Ckf/hGx2SudX2UKGgGR7+zFYMfA9FGaAdLAmgIR0CkgLJiAlOXdX2UKGgGR7/JGMn7YTTOaAdLA2gIR0CkgHhuGbkPdX2UKGgGR7+7oxHoX9BKaAdLAmgIR0CkgDxaX8fndX2UKGgGR7/TdznzQNTcaAdLA2gIR0CkgAWBz3h5dX2UKGgGR7/QBInSfDk3aAdLA2gIR0CkgIUqYqoZdX2UKGgGR7/Cwmmce8wpaAdLA2gIR0CkgEkVnEl3dX2UKGgGR7/SDFId2gWaaAdLBGgIR0CkgMYWLxZudX2UKGgGR7/HUCJXQtz0aAdLA2gIR0CkgBcOby6MdX2UKGgGR7+zpLVWjoIOaAdLAmgIR0CkgNFN1yNodX2UKGgGR7/HLt/nW8RMaAdLA2gIR0CkgJedkJ8fdX2UKGgGR7/MkEcKgIyCaAdLA2gIR0CkgFt1QqI8dX2UKGgGR7+jFCLMs6JZaAdLAWgIR0CkgNZPEbYLdX2UKGgGR7/G6bvw3HaOaAdLA2gIR0CkgCfzreImdX2UKGgGR7/XASnLq2SdaAdLA2gIR0CkgG50KZ2IdX2UKGgGR7/WwxnFo+OfaAdLBGgIR0CkgK7XQMQVdX2UKGgGR7/ZiYsunMt9aAdLBGgIR0CkgO0u14PgdX2UKGgGR7/K4uK4x1xLaAdLA2gIR0CkgHrmp2lmdX2UKGgGR7+7dXT3IuGsaAdLAmgIR0CkgPWkzoECdX2UKGgGR7/UUMoc7yQQaAdLA2gIR0CkgLufNA1OdX2UKGgGR7/hbr9l2/zraAdLBWgIR0CkgEALJCBxdX2UKGgGR7+6tPpIMBp6aAdLAmgIR0CkgMYT0xubdX2UKGgGR7/Uc7QswtaqaAdLA2gIR0CkgInim2srdX2UKGgGR7/WUnG8274BaAdLBGgIR0CkgQgVXV9XdX2UKGgGR7+7QQcxTKkmaAdLAmgIR0CkgM4BFNL2dX2UKGgGR7/A/oJRfnfVaAdLAmgIR0CkgJHCGetkdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5710306d1ad55a94ff610829165614e738cc408751f02fc14ff0b9fdfe47d3a5
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9f3d44ee0794ff71c94fd959ffa07132a29e98ec1f2ec6a7ecfc8d4dc553a77
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ce7b11a7520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ce7b118c300>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696296332970057058, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAlcZpvpFL4r6H74m84bXJvffg0z44DWO+bwMXv8P+0j4e6KY+cEsAQPqgcb2ALiDAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAh9OMvwpxl7/JKRI83GudvxRdtT/TcNe+xUx0v2IPlT8TktM/RunUP/Zyqb3x4YS+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACVxmm+kUvivofvibzh5mS/QVrcv3mhDr/htcm99+DTPjgNY763Hu2/x9fTPyMls79vAxe/w/7SPh7opj7E2EK/AgDVP34RYD9wSwBA+qBxvYAuIMDf9lI/HX2dvzm9kz6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.2282966 -0.44198278 -0.01683785]\n [-0.09849144 0.41382572 -0.22173011]\n [-0.58989614 0.41209993 0.32598966]\n [ 2.0046043 -0.05899141 -2.5028381 ]]", "desired_goal": "[[-1.1002053 -1.1831372 0.0089211 ]\n [-1.2298541 1.416903 -0.42078266]\n [-0.9542964 1.164532 1.6528953 ]\n [ 1.6633689 -0.0827388 -0.2595363 ]]", "observation": "[[-0.2282966 -0.44198278 -0.01683785 -0.89414793 -1.7215043 -0.5571514 ]\n [-0.09849144 0.41382572 -0.22173011 -1.8524998 1.6550225 -1.3995708 ]\n [-0.58989614 0.41209993 0.32598966 -0.7611201 1.6640627 0.8752669 ]\n [ 2.0046043 -0.05899141 -2.5028381 0.82407945 -1.2303807 0.28855303]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGJWHvSJpyL0RD609U1f6vKwWuj35x5k9AdphPHS+370h05c+6BN+vd+nyD0Upfc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06620234 -0.09785677 0.08450139]\n [-0.03055922 0.09086356 0.07508845]\n [ 0.01378489 -0.10924998 0.29653266]\n [-0.0620307 0.09797644 0.12092033]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv88TlDF6zE+MAWyUSwOMAXSUR0Ckf87OVxCIdX2UKGgGR7/OwA2hqTKUaAdLA2gIR0Ckf5UH6dlNdX2UKGgGR7+g5NoJzDGcaAdLAWgIR0Ckf9NJ4B3idX2UKGgGR7/FnW8RL9MsaAdLA2gIR0Ckf6M5XEIgdX2UKGgGR7/f22Xsw+MZaAdLBGgIR0Ckf2cLBsQ/dX2UKGgGR7/YMkhRqGlAaAdLBGgIR0CkfygCW/rTdX2UKGgGR7/JYEGJN0vHaAdLA2gIR0Ckf+HqeK8+dX2UKGgGR7+k2Hck+otMaAdLAWgIR0CkfyxGMGX5dX2UKGgGR7+3BnBciW3SaAdLAmgIR0Ckf+ph4MWodX2UKGgGR7/MOoYNy5qeaAdLA2gIR0Ckf7BczImxdX2UKGgGR7/NozN2TxG2aAdLA2gIR0Ckf3RF7UobdX2UKGgGR7/Bh86V+qioaAdLAmgIR0CkfzUdaMaTdX2UKGgGR7+YK6WgOBlMaAdLAWgIR0Ckf/FUhmoSdX2UKGgGR7+kG1QZXMhYaAdLAWgIR0Ckf7dTgl4UdX2UKGgGR7+9x3mmtQsPaAdLAmgIR0Ckfz/o7muDdX2UKGgGR7/D9Nvfj0cwaAdLA2gIR0Ckf4NrCWNWdX2UKGgGR7/FT1CgK4QSaAdLA2gIR0Ckf/4oAn2JdX2UKGgGR7/Sk7OmixmkaAdLA2gIR0Ckf8Qob4rSdX2UKGgGR7/R46fapPykaAdLA2gIR0Ckf0zI3irDdX2UKGgGR7+3NC7btZ3caAdLAmgIR0CkgAj9wWFfdX2UKGgGR7+4UZeiSJTEaAdLAmgIR0Ckf87yYoiLdX2UKGgGR7/WRplBhQWOaAdLBGgIR0Ckf5b349HMdX2UKGgGR7/CSJTER8MNaAdLAmgIR0Ckf1fdRBNVdX2UKGgGR7/BvCMxXXAeaAdLAmgIR0CkgBJlSS/1dX2UKGgGR7/OGkep4rz5aAdLA2gIR0Ckf95o4+8odX2UKGgGR7+3AAQxvegtaAdLAmgIR0Ckf6JaRp1zdX2UKGgGR7+2XqqwQlKLaAdLAmgIR0Ckf2NCRfWudX2UKGgGR7/OBBAv+OwQaAdLA2gIR0CkgCMotthvdX2UKGgGR7/EZEUj9n9OaAdLAmgIR0Ckf6zJQtSRdX2UKGgGR7+0aUA1ejVQaAdLAmgIR0Ckf23AmAskdX2UKGgGR7/TIg/1QIldaAdLA2gIR0Ckf+1wxWT5dX2UKGgGR7+0+zMRpUPyaAdLAmgIR0CkgCwGwA2idX2UKGgGR7+7cXWOIZZTaAdLAmgIR0Ckf3djPOY6dX2UKGgGR7+3xOLzf779aAdLAmgIR0CkgDUE5hjOdX2UKGgGR7/Vl18stkFwaAdLA2gIR0Ckf/rw4KhMdX2UKGgGR7/WYJ3PiT+vaAdLBGgIR0Ckf768QI2PdX2UKGgGR7/RzxPO6d1/aAdLA2gIR0Ckf4WRJVbSdX2UKGgGR7+6hVU+9rXUaAdLAmgIR0CkgAUqx1PndX2UKGgGR7/F+hoM8YAKaAdLA2gIR0CkgENOM2m6dX2UKGgGR7/I2Yv38GcGaAdLA2gIR0Ckf8zjebd8dX2UKGgGR7+4vcrRSgoPaAdLAmgIR0CkgA0SZjQRdX2UKGgGR7/VrBTGYKIBaAdLA2gIR0Ckf5G+CbtrdX2UKGgGR7+1tk4FRpDeaAdLAmgIR0CkgBditq59dX2UKGgGR7/dl8gIQe3haAdLBGgIR0CkgFXNcGC7dX2UKGgGR7/VhJiAlOXWaAdLBGgIR0Ckf99MTN+tdX2UKGgGR7/TmixmkFfRaAdLBGgIR0Ckf6QaJhvzdX2UKGgGR7/HASFoL5RCaAdLAmgIR0CkgF3rdFfBdX2UKGgGR7/R7W/ag261aAdLA2gIR0CkgCPnr6cidX2UKGgGR7/Adsi0OVgQaAdLAmgIR0Ckf+e9rXUZdX2UKGgGR7+j5GjKxLTQaAdLAWgIR0CkgGJTVDrrdX2UKGgGR7/HJOnEVFhHaAdLAmgIR0Ckf/JYT0xudX2UKGgGR7/PKji4rjHXaAdLA2gIR0CkgDKMm4RVdX2UKGgGR7+ZEDyOJcgRaAdLAWgIR0Ckf/a7ulXSdX2UKGgGR7/acMEzO5avaAdLBGgIR0Ckf7ejmCAddX2UKGgGR7+hKraM72csaAdLAWgIR0CkgDdBrvb5dX2UKGgGR7/ZbcXWOIZZaAdLBGgIR0CkgHWV3Ux3dX2UKGgGR7+7tiQT238XaAdLAmgIR0CkgH/fO2RadX2UKGgGR7/SACW/rSmZaAdLA2gIR0CkgEXbEgnudX2UKGgGR7/XKohpxm03aAdLBGgIR0Ckf8qwQlKLdX2UKGgGR7+oDHOryUcGaAdLAWgIR0CkgISlN1yOdX2UKGgGR7/ZexwAEMb4aAdLBWgIR0CkgA5Pdl/ZdX2UKGgGR7+7nr6ciGFjaAdLAmgIR0Ckf9MCcPOIdX2UKGgGR7/NsO5J9RaYaAdLA2gIR0CkgFKuKXOXdX2UKGgGR7+8TwlSjxkNaAdLAmgIR0CkgBaGHpKSdX2UKGgGR7+ldPci4axYaAdLAWgIR0Ckf9dsrNGFdX2UKGgGR7/Rtz0Yj0L/aAdLA2gIR0CkgJFKsdT6dX2UKGgGR7/BUe+23KB/aAdLAmgIR0CkgF003wTedX2UKGgGR7/CLFXJYDDCaAdLAmgIR0Ckf+HHeaa1dX2UKGgGR7/NBjWkJrtWaAdLA2gIR0CkgCT6i0v5dX2UKGgGR7/Rbi6xxDLKaAdLA2gIR0CkgJ9u5z5odX2UKGgGR7/MyjYZl4C7aAdLA2gIR0CkgGjpcHGCdX2UKGgGR7/Odtl7MPjGaAdLA2gIR0Ckf+2Dxsl+dX2UKGgGR7/BhIe5nUUgaAdLAmgIR0CkgKdQ40djdX2UKGgGR7/UqtozvZyuaAdLA2gIR0CkgDD5KvmpdX2UKGgGR7+3q6e5Fw1jaAdLAmgIR0Ckf/hGx2SudX2UKGgGR7+zFYMfA9FGaAdLAmgIR0CkgLJiAlOXdX2UKGgGR7/JGMn7YTTOaAdLA2gIR0CkgHhuGbkPdX2UKGgGR7+7oxHoX9BKaAdLAmgIR0CkgDxaX8fndX2UKGgGR7/TdznzQNTcaAdLA2gIR0CkgAWBz3h5dX2UKGgGR7/QBInSfDk3aAdLA2gIR0CkgIUqYqoZdX2UKGgGR7/Cwmmce8wpaAdLA2gIR0CkgEkVnEl3dX2UKGgGR7/SDFId2gWaaAdLBGgIR0CkgMYWLxZudX2UKGgGR7/HUCJXQtz0aAdLA2gIR0CkgBcOby6MdX2UKGgGR7+zpLVWjoIOaAdLAmgIR0CkgNFN1yNodX2UKGgGR7/HLt/nW8RMaAdLA2gIR0CkgJedkJ8fdX2UKGgGR7/MkEcKgIyCaAdLA2gIR0CkgFt1QqI8dX2UKGgGR7+jFCLMs6JZaAdLAWgIR0CkgNZPEbYLdX2UKGgGR7/G6bvw3HaOaAdLA2gIR0CkgCfzreImdX2UKGgGR7/XASnLq2SdaAdLA2gIR0CkgG50KZ2IdX2UKGgGR7/WwxnFo+OfaAdLBGgIR0CkgK7XQMQVdX2UKGgGR7/ZiYsunMt9aAdLBGgIR0CkgO0u14PgdX2UKGgGR7/K4uK4x1xLaAdLA2gIR0CkgHrmp2lmdX2UKGgGR7+7dXT3IuGsaAdLAmgIR0CkgPWkzoECdX2UKGgGR7/UUMoc7yQQaAdLA2gIR0CkgLufNA1OdX2UKGgGR7/hbr9l2/zraAdLBWgIR0CkgEALJCBxdX2UKGgGR7+6tPpIMBp6aAdLAmgIR0CkgMYT0xubdX2UKGgGR7/Uc7QswtaqaAdLA2gIR0CkgInim2srdX2UKGgGR7/WUnG8274BaAdLBGgIR0CkgQgVXV9XdX2UKGgGR7+7QQcxTKkmaAdLAmgIR0CkgM4BFNL2dX2UKGgGR7/A/oJRfnfVaAdLAmgIR0CkgJHCGetkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (671 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.20112681835889817, "std_reward": 0.11777806324274619, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-03T02:13:13.046596"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9bcad09c52dfdd1e5091368a35da555bab6fdcc803db238bb31f0afc794445a
3
+ size 2623