---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: sft
results: []
language:
- ja
datasets:
- Kendamarron/OpenMathInstruct-2-ja-CoT
- Kendamarron/Magpie-Tanuki-8B-CoT
---
# Model
[Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct)をCoTデータでファインチューニングすることで作成したreasoningモデルです。
学習にはQwen2.5-32B-Instruct-AWQを使って生成した合成データセットを使用しています。.
- [Kendamarron/llm-jp-3-3.7b-o1-v0.1](https://huggingface.co/datasets/Kendamarron/Magpie-Tanuki-8B-CoT)
- [Kendamarron/OpenMathInstruct-2-ja-CoT](https://huggingface.co/datasets/Kendamarron/OpenMathInstruct-2-ja-CoT)
## Usage
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
device = "cuda"
model = AutoModelForCausalLM.from_pretrained(
'Kendamarron/Qwen2.5-7B-o1-ja-v0.1',
torch_dtype=torch.bfloat16,
device_map=device,
)
tokenizer = AutoTokenizer.from_pretrained('Kendamarron/Qwen2.5-7B-o1-ja-v0.1')
messages = [
{"role": "system", "content": "あなたは優秀で論理的なアシスタントです。まずはタグの中であなたの思考の過程を記載し、タグの中に最終的にユーザーに提供する出力を記載します。"},
{"role": "user", "content": "1から10までの整数を足すと?"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=256,
do_sample=True,
top_p=0.95,
top_k=40,
temperature=0.7,
repetition_penalty=1.1,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=2
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0
### Training results
### Framework versions
- Transformers 4.46.1
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
### LLama-Factory yaml
```
### model
model_name_or_path: Qwen/Qwen2.5-7B-Instruct
### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: examples/deepspeed/ds_z3_config.json
### dataset
dataset: cot_normal, cot_math
template: qwen_ja
cutoff_len: 8192
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/qwen2.5/full/sft
logging_steps: 1
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 16
learning_rate: 1.0e-5
num_train_epochs: 2.0
lr_scheduler_type: cosine
optim: adamw_bnb_8bit
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500
### logging
report_to: wandb
```