--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - medmnist-v2 metrics: - accuracy - f1 model-index: - name: ViT_bloodmnist_std_0 results: - task: name: Image Classification type: image-classification dataset: name: medmnist-v2 type: medmnist-v2 config: bloodmnist split: validation args: bloodmnist metrics: - name: Accuracy type: accuracy value: 0.9690149079216603 - name: F1 type: f1 value: 0.9643637830046188 --- # ViT_bloodmnist_std_0 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.1010 - Accuracy: 0.9690 - F1: 0.9644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:-----:|:---------------:|:--------:|:------:| | 0.3571 | 0.0595 | 200 | 0.1183 | 0.9597 | 0.9577 | | 0.1349 | 0.1189 | 400 | 0.1324 | 0.9568 | 0.9521 | | 0.093 | 0.1784 | 600 | 0.1167 | 0.9609 | 0.9587 | | 0.0777 | 0.2378 | 800 | 0.0855 | 0.9755 | 0.9715 | | 0.0559 | 0.2973 | 1000 | 0.1004 | 0.9667 | 0.9649 | | 0.0473 | 0.3567 | 1200 | 0.1123 | 0.9696 | 0.9668 | | 0.0395 | 0.4162 | 1400 | 0.1074 | 0.9690 | 0.9676 | | 0.0338 | 0.4756 | 1600 | 0.1189 | 0.9632 | 0.9608 | | 0.027 | 0.5351 | 1800 | 0.1097 | 0.9772 | 0.9755 | | 0.0176 | 0.5945 | 2000 | 0.0958 | 0.9784 | 0.9766 | | 0.0105 | 0.6540 | 2200 | 0.1423 | 0.9720 | 0.9692 | | 0.0161 | 0.7134 | 2400 | 0.1725 | 0.9650 | 0.9625 | | 0.0113 | 0.7729 | 2600 | 0.1278 | 0.9708 | 0.9675 | | 0.0077 | 0.8323 | 2800 | 0.1132 | 0.9766 | 0.9743 | | 0.0078 | 0.8918 | 3000 | 0.1646 | 0.9690 | 0.9679 | | 0.007 | 0.9512 | 3200 | 0.1128 | 0.9737 | 0.9718 | | 0.0036 | 1.0107 | 3400 | 0.1489 | 0.9725 | 0.9735 | | 0.0047 | 1.0702 | 3600 | 0.1232 | 0.9796 | 0.9787 | | 0.0158 | 1.1296 | 3800 | 0.1597 | 0.9673 | 0.9615 | | 0.0082 | 1.1891 | 4000 | 0.1633 | 0.9731 | 0.9731 | | 0.0029 | 1.2485 | 4200 | 0.1312 | 0.9784 | 0.9770 | | 0.0029 | 1.3080 | 4400 | 0.1311 | 0.9778 | 0.9760 | | 0.0005 | 1.3674 | 4600 | 0.1121 | 0.9825 | 0.9818 | | 0.0039 | 1.4269 | 4800 | 0.2170 | 0.9626 | 0.9587 | | 0.0097 | 1.4863 | 5000 | 0.1750 | 0.9690 | 0.9693 | | 0.0065 | 1.5458 | 5200 | 0.1327 | 0.9778 | 0.9768 | | 0.0047 | 1.6052 | 5400 | 0.1401 | 0.9761 | 0.9744 | | 0.0035 | 1.6647 | 5600 | 0.1273 | 0.9801 | 0.9803 | | 0.0001 | 1.7241 | 5800 | 0.1269 | 0.9784 | 0.9777 | | 0.0 | 1.7836 | 6000 | 0.1601 | 0.9737 | 0.9723 | | 0.0 | 1.8430 | 6200 | 0.1328 | 0.9772 | 0.9765 | | 0.0 | 1.9025 | 6400 | 0.1326 | 0.9772 | 0.9765 | | 0.0 | 1.9620 | 6600 | 0.1333 | 0.9772 | 0.9765 | | 0.0022 | 2.0214 | 6800 | 0.1839 | 0.9755 | 0.9749 | | 0.0008 | 2.0809 | 7000 | 0.1914 | 0.9702 | 0.9683 | | 0.0008 | 2.1403 | 7200 | 0.1954 | 0.9731 | 0.9725 | | 0.0008 | 2.1998 | 7400 | 0.1592 | 0.9743 | 0.9737 | | 0.0 | 2.2592 | 7600 | 0.1653 | 0.9755 | 0.9750 | | 0.0 | 2.3187 | 7800 | 0.1649 | 0.9749 | 0.9747 | | 0.0 | 2.3781 | 8000 | 0.1654 | 0.9755 | 0.9756 | | 0.0 | 2.4376 | 8200 | 0.1646 | 0.9755 | 0.9756 | | 0.0 | 2.4970 | 8400 | 0.1643 | 0.9755 | 0.9756 | | 0.0 | 2.5565 | 8600 | 0.1713 | 0.9749 | 0.9747 | | 0.0 | 2.6159 | 8800 | 0.1698 | 0.9755 | 0.9756 | | 0.0 | 2.6754 | 9000 | 0.1698 | 0.9755 | 0.9756 | | 0.0 | 2.7348 | 9200 | 0.1696 | 0.9755 | 0.9756 | | 0.0 | 2.7943 | 9400 | 0.1696 | 0.9755 | 0.9756 | | 0.0 | 2.8537 | 9600 | 0.1696 | 0.9755 | 0.9756 | | 0.0 | 2.9132 | 9800 | 0.1697 | 0.9755 | 0.9756 | | 0.0 | 2.9727 | 10000 | 0.1698 | 0.9755 | 0.9756 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0