KiViDrag commited on
Commit
ca9328c
1 Parent(s): 240205b

End of training

Browse files
README.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google/vit-base-patch16-224
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - medmnist-v2
9
+ metrics:
10
+ - accuracy
11
+ - f1
12
+ model-index:
13
+ - name: ViT_bloodmnist_std_30
14
+ results:
15
+ - task:
16
+ name: Image Classification
17
+ type: image-classification
18
+ dataset:
19
+ name: medmnist-v2
20
+ type: medmnist-v2
21
+ config: bloodmnist
22
+ split: validation
23
+ args: bloodmnist
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.9429991230634317
28
+ - name: F1
29
+ type: f1
30
+ value: 0.9339022055894328
31
+ ---
32
+
33
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
34
+ should probably proofread and complete it, then remove this comment. -->
35
+
36
+ # ViT_bloodmnist_std_30
37
+
38
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the medmnist-v2 dataset.
39
+ It achieves the following results on the evaluation set:
40
+ - Loss: 0.1697
41
+ - Accuracy: 0.9430
42
+ - F1: 0.9339
43
+
44
+ ## Model description
45
+
46
+ More information needed
47
+
48
+ ## Intended uses & limitations
49
+
50
+ More information needed
51
+
52
+ ## Training and evaluation data
53
+
54
+ More information needed
55
+
56
+ ## Training procedure
57
+
58
+ ### Training hyperparameters
59
+
60
+ The following hyperparameters were used during training:
61
+ - learning_rate: 5e-05
62
+ - train_batch_size: 32
63
+ - eval_batch_size: 8
64
+ - seed: 42
65
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
+ - lr_scheduler_type: linear
67
+ - num_epochs: 3
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
72
+ |:-------------:|:------:|:-----:|:---------------:|:--------:|:------:|
73
+ | 0.5658 | 0.0595 | 200 | 1.2306 | 0.5076 | 0.4526 |
74
+ | 0.2887 | 0.1189 | 400 | 0.6368 | 0.7751 | 0.7410 |
75
+ | 0.2406 | 0.1784 | 600 | 0.6641 | 0.7827 | 0.7050 |
76
+ | 0.2229 | 0.2378 | 800 | 0.4808 | 0.8072 | 0.7832 |
77
+ | 0.1955 | 0.2973 | 1000 | 0.4868 | 0.8002 | 0.7827 |
78
+ | 0.1654 | 0.3567 | 1200 | 0.3306 | 0.8657 | 0.8466 |
79
+ | 0.1627 | 0.4162 | 1400 | 0.3754 | 0.8732 | 0.8367 |
80
+ | 0.1479 | 0.4756 | 1600 | 0.2421 | 0.9118 | 0.8949 |
81
+ | 0.1501 | 0.5351 | 1800 | 0.2125 | 0.9235 | 0.9076 |
82
+ | 0.1372 | 0.5945 | 2000 | 0.3706 | 0.8616 | 0.8337 |
83
+ | 0.1194 | 0.6540 | 2200 | 0.1552 | 0.9451 | 0.9370 |
84
+ | 0.1194 | 0.7134 | 2400 | 0.2345 | 0.9194 | 0.8992 |
85
+ | 0.1135 | 0.7729 | 2600 | 0.2121 | 0.9287 | 0.9113 |
86
+ | 0.1032 | 0.8323 | 2800 | 0.2023 | 0.9299 | 0.9152 |
87
+ | 0.1006 | 0.8918 | 3000 | 0.1784 | 0.9451 | 0.9376 |
88
+ | 0.0814 | 0.9512 | 3200 | 0.1273 | 0.9533 | 0.9484 |
89
+ | 0.0842 | 1.0107 | 3400 | 0.2012 | 0.9363 | 0.9240 |
90
+ | 0.0426 | 1.0702 | 3600 | 0.2221 | 0.9340 | 0.9280 |
91
+ | 0.06 | 1.1296 | 3800 | 0.2641 | 0.9100 | 0.9037 |
92
+ | 0.0632 | 1.1891 | 4000 | 0.1796 | 0.9433 | 0.9339 |
93
+ | 0.0506 | 1.2485 | 4200 | 0.2771 | 0.8989 | 0.8838 |
94
+ | 0.0467 | 1.3080 | 4400 | 0.1939 | 0.9393 | 0.9265 |
95
+ | 0.0469 | 1.3674 | 4600 | 0.1896 | 0.9410 | 0.9322 |
96
+ | 0.0457 | 1.4269 | 4800 | 0.1477 | 0.9509 | 0.9479 |
97
+ | 0.0416 | 1.4863 | 5000 | 0.2789 | 0.9206 | 0.9086 |
98
+ | 0.043 | 1.5458 | 5200 | 0.1832 | 0.9463 | 0.9389 |
99
+ | 0.0412 | 1.6052 | 5400 | 0.2100 | 0.9404 | 0.9337 |
100
+ | 0.0358 | 1.6647 | 5600 | 0.2368 | 0.9287 | 0.9135 |
101
+ | 0.0376 | 1.7241 | 5800 | 0.2668 | 0.9252 | 0.9096 |
102
+ | 0.0385 | 1.7836 | 6000 | 0.2145 | 0.9398 | 0.9291 |
103
+ | 0.0273 | 1.8430 | 6200 | 0.1995 | 0.9433 | 0.9302 |
104
+ | 0.0251 | 1.9025 | 6400 | 0.1900 | 0.9486 | 0.9395 |
105
+ | 0.0298 | 1.9620 | 6600 | 0.1617 | 0.9597 | 0.9526 |
106
+ | 0.02 | 2.0214 | 6800 | 0.1984 | 0.9463 | 0.9343 |
107
+ | 0.0083 | 2.0809 | 7000 | 0.1899 | 0.9498 | 0.9377 |
108
+ | 0.0068 | 2.1403 | 7200 | 0.2592 | 0.9340 | 0.9199 |
109
+ | 0.0059 | 2.1998 | 7400 | 0.2101 | 0.9428 | 0.9335 |
110
+ | 0.0066 | 2.2592 | 7600 | 0.2247 | 0.9422 | 0.9259 |
111
+ | 0.0062 | 2.3187 | 7800 | 0.2370 | 0.9439 | 0.9348 |
112
+ | 0.0084 | 2.3781 | 8000 | 0.2266 | 0.9474 | 0.9390 |
113
+ | 0.0049 | 2.4376 | 8200 | 0.2343 | 0.9480 | 0.9354 |
114
+ | 0.0075 | 2.4970 | 8400 | 0.2032 | 0.9486 | 0.9378 |
115
+ | 0.0025 | 2.5565 | 8600 | 0.1916 | 0.9515 | 0.9436 |
116
+ | 0.0064 | 2.6159 | 8800 | 0.2066 | 0.9533 | 0.9436 |
117
+ | 0.004 | 2.6754 | 9000 | 0.2404 | 0.9445 | 0.9321 |
118
+ | 0.0029 | 2.7348 | 9200 | 0.2402 | 0.9439 | 0.9322 |
119
+ | 0.0008 | 2.7943 | 9400 | 0.2256 | 0.9468 | 0.9365 |
120
+ | 0.003 | 2.8537 | 9600 | 0.2265 | 0.9492 | 0.9408 |
121
+ | 0.002 | 2.9132 | 9800 | 0.2278 | 0.9515 | 0.9419 |
122
+ | 0.0013 | 2.9727 | 10000 | 0.2175 | 0.9504 | 0.9422 |
123
+
124
+
125
+ ### Framework versions
126
+
127
+ - Transformers 4.45.1
128
+ - Pytorch 2.4.0
129
+ - Datasets 3.0.1
130
+ - Tokenizers 0.20.0
config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/vit-base-patch16-224",
3
+ "architectures": [
4
+ "ViTForImageClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "encoder_stride": 16,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.0,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "basophil",
13
+ "1": "eosinophil",
14
+ "2": "erythroblast",
15
+ "3": "immature granulocytes(myelocytes, metamyelocytes and promyelocytes)",
16
+ "4": "lymphocyte",
17
+ "5": "monocyte",
18
+ "6": "neutrophil",
19
+ "7": "platelet"
20
+ },
21
+ "image_size": 224,
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "basophil": "0",
26
+ "eosinophil": "1",
27
+ "erythroblast": "2",
28
+ "immature granulocytes(myelocytes, metamyelocytes and promyelocytes)": "3",
29
+ "lymphocyte": "4",
30
+ "monocyte": "5",
31
+ "neutrophil": "6",
32
+ "platelet": "7"
33
+ },
34
+ "layer_norm_eps": 1e-12,
35
+ "model_type": "vit",
36
+ "num_attention_heads": 12,
37
+ "num_channels": 3,
38
+ "num_hidden_layers": 12,
39
+ "patch_size": 16,
40
+ "problem_type": "single_label_classification",
41
+ "qkv_bias": true,
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.45.1"
44
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b167f2026608e184e21fd3f0041e326ba8e303badf5b90d98ef6f41b12b60d4a
3
+ size 343242432
preprocessor_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_rescale": true,
4
+ "do_resize": true,
5
+ "image_mean": [
6
+ 0.5,
7
+ 0.5,
8
+ 0.5
9
+ ],
10
+ "image_processor_type": "ViTImageProcessor",
11
+ "image_std": [
12
+ 0.5,
13
+ 0.5,
14
+ 0.5
15
+ ],
16
+ "resample": 2,
17
+ "rescale_factor": 0.00392156862745098,
18
+ "size": {
19
+ "height": 224,
20
+ "width": 224
21
+ }
22
+ }
runs/Nov09_10-50-55_533218bcf843/events.out.tfevents.1731149458.533218bcf843.24.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd47c02bcd738b7ccf07c4fac7d05eb62a51a249ee8c94b055963b33ca189518
3
+ size 34706
runs/Nov09_10-50-55_533218bcf843/events.out.tfevents.1731157014.533218bcf843.24.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfb93174de1907ca93f0db5af2f18916f569d05f58ffa5c2a1422ad2df554785
3
+ size 457
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d22cb0898a41b936d4a5e1b1453e0f183f5371d49c28cbaa0ed336a93371f675
3
+ size 5240