--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - medmnist-v2 metrics: - accuracy - f1 model-index: - name: ViT_bloodmnist_std_30 results: - task: name: Image Classification type: image-classification dataset: name: medmnist-v2 type: medmnist-v2 config: bloodmnist split: validation args: bloodmnist metrics: - name: Accuracy type: accuracy value: 0.9429991230634317 - name: F1 type: f1 value: 0.9339022055894328 --- # ViT_bloodmnist_std_30 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.1697 - Accuracy: 0.9430 - F1: 0.9339 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:-----:|:---------------:|:--------:|:------:| | 0.5658 | 0.0595 | 200 | 1.2306 | 0.5076 | 0.4526 | | 0.2887 | 0.1189 | 400 | 0.6368 | 0.7751 | 0.7410 | | 0.2406 | 0.1784 | 600 | 0.6641 | 0.7827 | 0.7050 | | 0.2229 | 0.2378 | 800 | 0.4808 | 0.8072 | 0.7832 | | 0.1955 | 0.2973 | 1000 | 0.4868 | 0.8002 | 0.7827 | | 0.1654 | 0.3567 | 1200 | 0.3306 | 0.8657 | 0.8466 | | 0.1627 | 0.4162 | 1400 | 0.3754 | 0.8732 | 0.8367 | | 0.1479 | 0.4756 | 1600 | 0.2421 | 0.9118 | 0.8949 | | 0.1501 | 0.5351 | 1800 | 0.2125 | 0.9235 | 0.9076 | | 0.1372 | 0.5945 | 2000 | 0.3706 | 0.8616 | 0.8337 | | 0.1194 | 0.6540 | 2200 | 0.1552 | 0.9451 | 0.9370 | | 0.1194 | 0.7134 | 2400 | 0.2345 | 0.9194 | 0.8992 | | 0.1135 | 0.7729 | 2600 | 0.2121 | 0.9287 | 0.9113 | | 0.1032 | 0.8323 | 2800 | 0.2023 | 0.9299 | 0.9152 | | 0.1006 | 0.8918 | 3000 | 0.1784 | 0.9451 | 0.9376 | | 0.0814 | 0.9512 | 3200 | 0.1273 | 0.9533 | 0.9484 | | 0.0842 | 1.0107 | 3400 | 0.2012 | 0.9363 | 0.9240 | | 0.0426 | 1.0702 | 3600 | 0.2221 | 0.9340 | 0.9280 | | 0.06 | 1.1296 | 3800 | 0.2641 | 0.9100 | 0.9037 | | 0.0632 | 1.1891 | 4000 | 0.1796 | 0.9433 | 0.9339 | | 0.0506 | 1.2485 | 4200 | 0.2771 | 0.8989 | 0.8838 | | 0.0467 | 1.3080 | 4400 | 0.1939 | 0.9393 | 0.9265 | | 0.0469 | 1.3674 | 4600 | 0.1896 | 0.9410 | 0.9322 | | 0.0457 | 1.4269 | 4800 | 0.1477 | 0.9509 | 0.9479 | | 0.0416 | 1.4863 | 5000 | 0.2789 | 0.9206 | 0.9086 | | 0.043 | 1.5458 | 5200 | 0.1832 | 0.9463 | 0.9389 | | 0.0412 | 1.6052 | 5400 | 0.2100 | 0.9404 | 0.9337 | | 0.0358 | 1.6647 | 5600 | 0.2368 | 0.9287 | 0.9135 | | 0.0376 | 1.7241 | 5800 | 0.2668 | 0.9252 | 0.9096 | | 0.0385 | 1.7836 | 6000 | 0.2145 | 0.9398 | 0.9291 | | 0.0273 | 1.8430 | 6200 | 0.1995 | 0.9433 | 0.9302 | | 0.0251 | 1.9025 | 6400 | 0.1900 | 0.9486 | 0.9395 | | 0.0298 | 1.9620 | 6600 | 0.1617 | 0.9597 | 0.9526 | | 0.02 | 2.0214 | 6800 | 0.1984 | 0.9463 | 0.9343 | | 0.0083 | 2.0809 | 7000 | 0.1899 | 0.9498 | 0.9377 | | 0.0068 | 2.1403 | 7200 | 0.2592 | 0.9340 | 0.9199 | | 0.0059 | 2.1998 | 7400 | 0.2101 | 0.9428 | 0.9335 | | 0.0066 | 2.2592 | 7600 | 0.2247 | 0.9422 | 0.9259 | | 0.0062 | 2.3187 | 7800 | 0.2370 | 0.9439 | 0.9348 | | 0.0084 | 2.3781 | 8000 | 0.2266 | 0.9474 | 0.9390 | | 0.0049 | 2.4376 | 8200 | 0.2343 | 0.9480 | 0.9354 | | 0.0075 | 2.4970 | 8400 | 0.2032 | 0.9486 | 0.9378 | | 0.0025 | 2.5565 | 8600 | 0.1916 | 0.9515 | 0.9436 | | 0.0064 | 2.6159 | 8800 | 0.2066 | 0.9533 | 0.9436 | | 0.004 | 2.6754 | 9000 | 0.2404 | 0.9445 | 0.9321 | | 0.0029 | 2.7348 | 9200 | 0.2402 | 0.9439 | 0.9322 | | 0.0008 | 2.7943 | 9400 | 0.2256 | 0.9468 | 0.9365 | | 0.003 | 2.8537 | 9600 | 0.2265 | 0.9492 | 0.9408 | | 0.002 | 2.9132 | 9800 | 0.2278 | 0.9515 | 0.9419 | | 0.0013 | 2.9727 | 10000 | 0.2175 | 0.9504 | 0.9422 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0