--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - medmnist-v2 metrics: - accuracy - f1 model-index: - name: ViT_breastmnist_std_60 results: - task: name: Image Classification type: image-classification dataset: name: medmnist-v2 type: medmnist-v2 config: breastmnist split: validation args: breastmnist metrics: - name: Accuracy type: accuracy value: 0.7756410256410257 - name: F1 type: f1 value: 0.6137247966041741 --- # ViT_breastmnist_std_60 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the medmnist-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.5157 - Accuracy: 0.7756 - F1: 0.6137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.5179 | 0.2597 | 20 | 0.5240 | 0.7436 | 0.5385 | | 0.4306 | 0.5195 | 40 | 0.4807 | 0.7949 | 0.6855 | | 0.4258 | 0.7792 | 60 | 0.4812 | 0.7949 | 0.6518 | | 0.4613 | 1.0390 | 80 | 0.4491 | 0.8333 | 0.7247 | | 0.4194 | 1.2987 | 100 | 0.4573 | 0.8333 | 0.7247 | | 0.3693 | 1.5584 | 120 | 0.4665 | 0.8205 | 0.6953 | | 0.3825 | 1.8182 | 140 | 0.4695 | 0.7821 | 0.6733 | | 0.387 | 2.0779 | 160 | 0.4410 | 0.8205 | 0.7248 | | 0.3341 | 2.3377 | 180 | 0.4422 | 0.8205 | 0.7367 | | 0.3192 | 2.5974 | 200 | 0.4457 | 0.8205 | 0.7111 | | 0.3062 | 2.8571 | 220 | 0.4575 | 0.8205 | 0.7111 | | 0.2485 | 3.1169 | 240 | 0.4526 | 0.8333 | 0.7383 | | 0.2415 | 3.3766 | 260 | 0.4430 | 0.8462 | 0.7641 | | 0.2377 | 3.6364 | 280 | 0.4529 | 0.8333 | 0.7247 | | 0.2417 | 3.8961 | 300 | 0.4386 | 0.8205 | 0.7111 | | 0.1783 | 4.1558 | 320 | 0.4467 | 0.8333 | 0.7383 | | 0.193 | 4.4156 | 340 | 0.4724 | 0.8077 | 0.6823 | | 0.1736 | 4.6753 | 360 | 0.4757 | 0.8333 | 0.7383 | | 0.1656 | 4.9351 | 380 | 0.4677 | 0.8333 | 0.7383 | | 0.1214 | 5.1948 | 400 | 0.4747 | 0.8077 | 0.6981 | | 0.0851 | 5.4545 | 420 | 0.4782 | 0.7949 | 0.6698 | | 0.0893 | 5.7143 | 440 | 0.4842 | 0.8077 | 0.6823 | | 0.0978 | 5.9740 | 460 | 0.4883 | 0.8077 | 0.6823 | | 0.0518 | 6.2338 | 480 | 0.4861 | 0.8077 | 0.6981 | | 0.0662 | 6.4935 | 500 | 0.5017 | 0.8077 | 0.6981 | | 0.058 | 6.7532 | 520 | 0.5092 | 0.7949 | 0.6518 | | 0.0511 | 7.0130 | 540 | 0.5003 | 0.8205 | 0.7111 | | 0.0235 | 7.2727 | 560 | 0.5041 | 0.8077 | 0.6823 | | 0.0204 | 7.5325 | 580 | 0.5140 | 0.8205 | 0.7111 | | 0.0196 | 7.7922 | 600 | 0.5122 | 0.8205 | 0.7111 | | 0.0108 | 8.0519 | 620 | 0.5186 | 0.8205 | 0.7111 | | 0.012 | 8.3117 | 640 | 0.5315 | 0.8333 | 0.7247 | | 0.0077 | 8.5714 | 660 | 0.5319 | 0.8205 | 0.7111 | | 0.0187 | 8.8312 | 680 | 0.5279 | 0.8205 | 0.7111 | | 0.0063 | 9.0909 | 700 | 0.5304 | 0.8205 | 0.7111 | | 0.004 | 9.3506 | 720 | 0.5312 | 0.8205 | 0.7111 | | 0.0044 | 9.6104 | 740 | 0.5310 | 0.8205 | 0.7111 | | 0.0076 | 9.8701 | 760 | 0.5323 | 0.8205 | 0.7111 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0