File size: 3,579 Bytes
d706015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---

# xsum_123_3000_1500_validation

This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. 
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. 

## Usage 

To use this model, please install BERTopic:

```
pip install -U bertopic
```

You can use the model as follows:

```python
from bertopic import BERTopic
topic_model = BERTopic.load("KingKazma/xsum_123_3000_1500_validation")

topic_model.get_topic_info()
```

## Topic overview

* Number of topics: 27
* Number of training documents: 1500

<details>
  <summary>Click here for an overview of all topics.</summary>
  
  | Topic ID | Topic Keywords | Topic Frequency | Label | 
|----------|----------------|-----------------|-------| 
| -1 | said - mr - would - also - year | 5 | -1_said_mr_would_also | 
| 0 | police - said - court - mr - found | 654 | 0_police_said_court_mr | 
| 1 | said - council - site - would - development | 101 | 1_said_council_site_would | 
| 2 | attack - killed - taliban - syria - government | 68 | 2_attack_killed_taliban_syria | 
| 3 | gold - world - race - sport - olympic | 57 | 3_gold_world_race_sport | 
| 4 | price - bank - rate - share - company | 53 | 4_price_bank_rate_share | 
| 5 | party - vote - labour - mr - ukip | 52 | 5_party_vote_labour_mr | 
| 6 | league - season - player - premier - club | 49 | 6_league_season_player_premier | 
| 7 | cricket - england - wicket - game - test | 45 | 7_cricket_england_wicket_game | 
| 8 | crash - car - road - accident - said | 42 | 8_crash_car_road_accident | 
| 9 | wales - game - rugby - davies - hes | 40 | 9_wales_game_rugby_davies | 
| 10 | patient - health - hospital - service - ambulance | 34 | 10_patient_health_hospital_service | 
| 11 | foul - corner - half - box - kick | 32 | 11_foul_corner_half_box | 
| 12 | trump - clinton - mr - mrs - us | 30 | 12_trump_clinton_mr_mrs | 
| 13 | president - mr - africa - south - mugabe | 30 | 13_president_mr_africa_south | 
| 14 | animal - dog - bird - said - rspca | 28 | 14_animal_dog_bird_said | 
| 15 | school - education - teacher - child - pupil | 26 | 15_school_education_teacher_child | 
| 16 | world - round - number - murray - court | 25 | 16_world_round_number_murray | 
| 17 | northern - ireland - party - dup - sinn | 23 | 17_northern_ireland_party_dup | 
| 18 | album - song - like - music - band | 17 | 18_album_song_like_music | 
| 19 | fire - building - police - blaze - service | 16 | 19_fire_building_police_blaze | 
| 20 | fossil - brontosaurus - dinosaur - found - animal | 16 | 20_fossil_brontosaurus_dinosaur_found | 
| 21 | film - star - artist - novel - photograph | 16 | 21_film_star_artist_novel | 
| 22 | wage - income - living - tax - uk | 11 | 22_wage_income_living_tax | 
| 23 | gang - guerrero - prison - state - police | 11 | 23_gang_guerrero_prison_state | 
| 24 | albion - brighton - hove - burton - wigan | 11 | 24_albion_brighton_hove_burton | 
| 25 | 3d - space - kelly - cmdr - flight | 8 | 25_3d_space_kelly_cmdr |
  
</details>

## Training hyperparameters

* calculate_probabilities: True
* language: english
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: False

## Framework versions

* Numpy: 1.22.4
* HDBSCAN: 0.8.33
* UMAP: 0.5.3
* Pandas: 1.5.3
* Scikit-Learn: 1.2.2
* Sentence-transformers: 2.2.2
* Transformers: 4.31.0
* Numba: 0.57.1
* Plotly: 5.13.1
* Python: 3.10.12