File size: 4,508 Bytes
e5cbf00
 
 
 
 
 
 
 
 
5a53ab1
e5cbf00
 
 
 
 
 
 
5a53ab1
e5cbf00
5a53ab1
e5cbf00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a53ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5cbf00
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-organ
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-finetuned-organ

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0117
- Accuracy: 0.8182

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0965        | 1.0   | 6    | 1.0843          | 0.4545   |
| 1.0989        | 2.0   | 12   | 1.0883          | 0.3636   |
| 1.0931        | 3.0   | 18   | 1.0914          | 0.5455   |
| 1.0702        | 4.0   | 24   | 1.0578          | 0.4545   |
| 0.9822        | 5.0   | 30   | 0.9994          | 0.7273   |
| 0.9139        | 6.0   | 36   | 0.9735          | 0.5455   |
| 0.8008        | 7.0   | 42   | 0.7004          | 0.9091   |
| 0.6798        | 8.0   | 48   | 0.7404          | 0.8182   |
| 0.5969        | 9.0   | 54   | 0.7192          | 0.7273   |
| 0.4976        | 10.0  | 60   | 0.4668          | 0.9091   |
| 0.436         | 11.0  | 66   | 0.7406          | 0.7273   |
| 0.5859        | 12.0  | 72   | 0.6139          | 0.7273   |
| 0.3788        | 13.0  | 78   | 0.6551          | 0.7273   |
| 0.3176        | 14.0  | 84   | 0.4746          | 0.9091   |
| 0.2892        | 15.0  | 90   | 0.8285          | 0.7273   |
| 0.2452        | 16.0  | 96   | 0.8523          | 0.7273   |
| 0.1464        | 17.0  | 102  | 0.9791          | 0.7273   |
| 0.4589        | 18.0  | 108  | 1.2469          | 0.6364   |
| 0.1641        | 19.0  | 114  | 1.1607          | 0.6364   |
| 0.1765        | 20.0  | 120  | 0.7318          | 0.8182   |
| 0.1553        | 21.0  | 126  | 1.1178          | 0.6364   |
| 0.2048        | 22.0  | 132  | 1.2835          | 0.6364   |
| 0.2477        | 23.0  | 138  | 0.7558          | 0.8182   |
| 0.2042        | 24.0  | 144  | 0.8053          | 0.8182   |
| 0.2242        | 25.0  | 150  | 1.1131          | 0.7273   |
| 0.2063        | 26.0  | 156  | 1.1455          | 0.7273   |
| 0.1148        | 27.0  | 162  | 1.1386          | 0.7273   |
| 0.0948        | 28.0  | 168  | 1.0196          | 0.7273   |
| 0.2296        | 29.0  | 174  | 1.2216          | 0.7273   |
| 0.1771        | 30.0  | 180  | 1.2645          | 0.7273   |
| 0.0749        | 31.0  | 186  | 1.3599          | 0.6364   |
| 0.0973        | 32.0  | 192  | 1.2880          | 0.7273   |
| 0.0231        | 33.0  | 198  | 0.9015          | 0.8182   |
| 0.1185        | 34.0  | 204  | 0.9180          | 0.8182   |
| 0.1645        | 35.0  | 210  | 1.3635          | 0.7273   |
| 0.0163        | 36.0  | 216  | 1.3961          | 0.7273   |
| 0.0743        | 37.0  | 222  | 1.3699          | 0.7273   |
| 0.0211        | 38.0  | 228  | 0.8085          | 0.8182   |
| 0.0713        | 39.0  | 234  | 0.8418          | 0.8182   |
| 0.0122        | 40.0  | 240  | 0.7659          | 0.8182   |
| 0.0116        | 41.0  | 246  | 0.9891          | 0.8182   |
| 0.0117        | 42.0  | 252  | 1.4963          | 0.7273   |
| 0.0738        | 43.0  | 258  | 1.4932          | 0.7273   |
| 0.0718        | 44.0  | 264  | 1.4665          | 0.7273   |
| 0.1334        | 45.0  | 270  | 0.9666          | 0.8182   |
| 0.0662        | 46.0  | 276  | 0.9798          | 0.8182   |
| 0.0973        | 47.0  | 282  | 0.9954          | 0.8182   |
| 0.0105        | 48.0  | 288  | 1.0073          | 0.8182   |
| 0.0092        | 49.0  | 294  | 1.0107          | 0.8182   |
| 0.0089        | 50.0  | 300  | 1.0117          | 0.8182   |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1