File size: 4,750 Bytes
e5cbf00
 
 
 
 
3134ab7
 
e5cbf00
 
 
 
3134ab7
 
 
 
 
 
 
 
 
 
 
e5cbf00
 
 
 
 
 
 
3134ab7
e5cbf00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-organ
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8181818181818182
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-finetuned-organ

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2973
- Accuracy: 0.8182

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0652        | 1.0   | 6    | 0.0202          | 1.0      |
| 0.0226        | 2.0   | 12   | 0.0171          | 1.0      |
| 0.1719        | 3.0   | 18   | 0.5006          | 0.9091   |
| 0.1115        | 4.0   | 24   | 1.4275          | 0.7273   |
| 0.191         | 5.0   | 30   | 0.3866          | 0.9091   |
| 0.4063        | 6.0   | 36   | 1.6167          | 0.7273   |
| 0.6557        | 7.0   | 42   | 2.5850          | 0.5455   |
| 0.7413        | 8.0   | 48   | 1.7765          | 0.5455   |
| 0.8188        | 9.0   | 54   | 2.1469          | 0.5455   |
| 1.168         | 10.0  | 60   | 1.0001          | 0.8182   |
| 0.9951        | 11.0  | 66   | 1.0984          | 0.8182   |
| 0.7365        | 12.0  | 72   | 1.6653          | 0.5455   |
| 0.5536        | 13.0  | 78   | 1.2873          | 0.7273   |
| 0.8315        | 14.0  | 84   | 0.2661          | 0.9091   |
| 0.3605        | 15.0  | 90   | 0.2670          | 0.9091   |
| 0.6238        | 16.0  | 96   | 0.5140          | 0.8182   |
| 0.3698        | 17.0  | 102  | 0.5254          | 0.8182   |
| 0.2818        | 18.0  | 108  | 1.1506          | 0.6364   |
| 0.4245        | 19.0  | 114  | 1.2583          | 0.6364   |
| 0.6101        | 20.0  | 120  | 0.9249          | 0.7273   |
| 0.2197        | 21.0  | 126  | 1.1442          | 0.7273   |
| 0.2161        | 22.0  | 132  | 1.6102          | 0.6364   |
| 0.6048        | 23.0  | 138  | 1.3656          | 0.7273   |
| 0.1764        | 24.0  | 144  | 1.4459          | 0.7273   |
| 0.1602        | 25.0  | 150  | 1.4824          | 0.7273   |
| 0.185         | 26.0  | 156  | 1.5401          | 0.7273   |
| 0.0679        | 27.0  | 162  | 1.6073          | 0.7273   |
| 0.1278        | 28.0  | 168  | 1.0710          | 0.8182   |
| 0.1546        | 29.0  | 174  | 0.5503          | 0.9091   |
| 0.2121        | 30.0  | 180  | 0.5570          | 0.9091   |
| 0.0087        | 31.0  | 186  | 0.5756          | 0.9091   |
| 0.2233        | 32.0  | 192  | 1.1581          | 0.8182   |
| 0.0088        | 33.0  | 198  | 1.1720          | 0.8182   |
| 0.1851        | 34.0  | 204  | 1.5192          | 0.6364   |
| 0.0098        | 35.0  | 210  | 1.7753          | 0.7273   |
| 0.008         | 36.0  | 216  | 1.8136          | 0.7273   |
| 0.0648        | 37.0  | 222  | 1.8277          | 0.7273   |
| 0.1351        | 38.0  | 228  | 1.8239          | 0.7273   |
| 0.1287        | 39.0  | 234  | 1.7748          | 0.7273   |
| 0.0712        | 40.0  | 240  | 1.6251          | 0.7273   |
| 0.0503        | 41.0  | 246  | 1.2516          | 0.8182   |
| 0.1273        | 42.0  | 252  | 1.2622          | 0.8182   |
| 0.0859        | 43.0  | 258  | 1.2601          | 0.8182   |
| 0.073         | 44.0  | 264  | 1.2624          | 0.8182   |
| 0.2027        | 45.0  | 270  | 1.2639          | 0.8182   |
| 0.0477        | 46.0  | 276  | 1.2667          | 0.8182   |
| 0.1111        | 47.0  | 282  | 1.2688          | 0.8182   |
| 0.072         | 48.0  | 288  | 1.2689          | 0.8182   |
| 0.0615        | 49.0  | 294  | 1.2726          | 0.8182   |
| 0.0049        | 50.0  | 300  | 1.2973          | 0.8182   |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1