--- base_model: google/gemma-2-9b tags: - text-generation-inference - transformers - unsloth - gemma2 - trl license: gemma language: - en, datasets: - llm-jp/magpie-sft-v1.0 --- # Uploaded model - **Developed by:** Kohsaku - **License:** Gemma 2 License - **Finetuned from model :** google/gemma-2-9b This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # Sample Use ``` python model_name = "Kohsaku/gemma-2-9b-finetune-2" max_seq_length = 1024 dtype = None load_in_4bit = True model, tokenizer = FastLanguageModel.from_pretrained( model_name = model_name, max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, token = HF_TOKEN, ) FastLanguageModel.for_inference(model) text = "自然言語処理とは何か" tokenized_input = tokenizer.encode(text, add_special_tokens=True , return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( tokenized_input, max_new_tokens = 1024, use_cache = True, do_sample=False, repetition_penalty=1.2 )[0] print(tokenizer.decode(output)) ```