KoichiYasuoka
commited on
Commit
•
3556302
1
Parent(s):
bc6bdf0
chu_liu_edmonds
Browse files
README.md
CHANGED
@@ -65,12 +65,12 @@ nlp=UDgoeswith("KoichiYasuoka/deberta-large-japanese-wikipedia-ud-goeswith")
|
|
65 |
print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている"))
|
66 |
```
|
67 |
|
68 |
-
|
|
|
69 |
|
70 |
```
|
71 |
from transformers import pipeline
|
72 |
-
nlp=pipeline("universal-dependencies","KoichiYasuoka/deberta-large-japanese-wikipedia-ud-goeswith",trust_remote_code=True)
|
73 |
print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている"))
|
74 |
```
|
75 |
|
76 |
-
[ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/) is required.
|
|
|
65 |
print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている"))
|
66 |
```
|
67 |
|
68 |
+
with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/).
|
69 |
+
Or without ufal.chu-liu-edmonds:
|
70 |
|
71 |
```
|
72 |
from transformers import pipeline
|
73 |
+
nlp=pipeline("universal-dependencies","KoichiYasuoka/deberta-large-japanese-wikipedia-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")
|
74 |
print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている"))
|
75 |
```
|
76 |
|
|
ud.py
CHANGED
@@ -9,7 +9,6 @@ class UniversalDependenciesPipeline(TokenClassificationPipeline):
|
|
9 |
return {"logits":e.logits[:,1:-2,:],**model_input}
|
10 |
def postprocess(self,model_output,**kwargs):
|
11 |
import numpy
|
12 |
-
import ufal.chu_liu_edmonds
|
13 |
e=model_output["logits"].numpy()
|
14 |
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
|
15 |
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan)
|
@@ -19,27 +18,43 @@ class UniversalDependenciesPipeline(TokenClassificationPipeline):
|
|
19 |
for j in range(i+2,e.shape[1]):
|
20 |
r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1
|
21 |
e[:,:,g]+=numpy.where(r==0,0,numpy.nan)
|
22 |
-
m=numpy.
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
m[
|
28 |
-
|
29 |
-
if [0 for i in h if i==0]!=[0]:
|
30 |
-
m[:,0]+=numpy.where(m[:,0]==numpy.nanmax(m[[i for i,j in enumerate(h) if j==0],0]),0,numpy.nan)
|
31 |
-
m[[i for i,j in enumerate(h) if j==0]]+=[0 if i==0 or j==0 else numpy.nan for i,j in enumerate(h)]
|
32 |
-
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
|
33 |
v=[(s,e) for s,e in model_output["offset_mapping"][0].tolist() if s<e]
|
34 |
-
q=[self.model.config.id2label[p[i
|
35 |
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
|
36 |
-
for i,j in reversed(list(enumerate(q[
|
37 |
-
if j[-1]=="goeswith":
|
38 |
h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
|
39 |
-
v[i-
|
40 |
q.pop(i)
|
41 |
t=model_output["sentence"].replace("\n"," ")
|
42 |
u="# text = "+t+"\n"
|
43 |
-
for i,(s,e) in enumerate(v
|
44 |
-
u+="\t".join([str(i),t[s:e],"_",q[i][0],"_","|".join(q[i][1:-1]),str(h[i]),q[i][-1],"_","_" if i<len(v) and e<v[i][0] else "SpaceAfter=No"])+"\n"
|
45 |
return u+"\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
return {"logits":e.logits[:,1:-2,:],**model_input}
|
10 |
def postprocess(self,model_output,**kwargs):
|
11 |
import numpy
|
|
|
12 |
e=model_output["logits"].numpy()
|
13 |
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
|
14 |
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan)
|
|
|
18 |
for j in range(i+2,e.shape[1]):
|
19 |
r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1
|
20 |
e[:,:,g]+=numpy.where(r==0,0,numpy.nan)
|
21 |
+
m,p=numpy.nanmax(e,axis=2),numpy.nanargmax(e,axis=2)
|
22 |
+
h=self.chu_liu_edmonds(m)
|
23 |
+
z=[i for i,j in enumerate(h) if i==j]
|
24 |
+
if len(z)>1:
|
25 |
+
k,h=z[numpy.nanargmax(m[z,z])],numpy.nanmin(m)-numpy.nanmax(m)
|
26 |
+
m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
|
27 |
+
h=self.chu_liu_edmonds(m)
|
|
|
|
|
|
|
|
|
28 |
v=[(s,e) for s,e in model_output["offset_mapping"][0].tolist() if s<e]
|
29 |
+
q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
|
30 |
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
|
31 |
+
for i,j in reversed(list(enumerate(q[1:],1))):
|
32 |
+
if j[-1]=="goeswith" and set([t[-1] for t in q[h[i]+1:i+1]])=={"goeswith"}:
|
33 |
h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
|
34 |
+
v[i-1]=(v[i-1][0],v.pop(i)[1])
|
35 |
q.pop(i)
|
36 |
t=model_output["sentence"].replace("\n"," ")
|
37 |
u="# text = "+t+"\n"
|
38 |
+
for i,(s,e) in enumerate(v):
|
39 |
+
u+="\t".join([str(i+1),t[s:e],"_",q[i][0],"_","|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),q[i][-1],"_","_" if i+1<len(v) and e<v[i+1][0] else "SpaceAfter=No"])+"\n"
|
40 |
return u+"\n"
|
41 |
+
def chu_liu_edmonds(self,matrix):
|
42 |
+
import numpy
|
43 |
+
h=numpy.nanargmax(matrix,axis=0)
|
44 |
+
x=[-1 if i==j else j for i,j in enumerate(h)]
|
45 |
+
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
|
46 |
+
y=[]
|
47 |
+
while x!=y:
|
48 |
+
y=list(x)
|
49 |
+
for i,j in enumerate(x):
|
50 |
+
x[i]=b(x,i,j)
|
51 |
+
if max(x)<0:
|
52 |
+
return h
|
53 |
+
y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
|
54 |
+
z=matrix-numpy.nanmax(matrix,axis=0)
|
55 |
+
m=numpy.block([[z[x,:][:,x],numpy.nanmax(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.nanmax(z[y,:][:,x],axis=0),numpy.nanmax(z[y,y])]])
|
56 |
+
k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.nanargmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
|
57 |
+
h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
|
58 |
+
i=y[numpy.nanargmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
|
59 |
+
h[i]=x[k[-1]] if k[-1]<len(x) else i
|
60 |
+
return h
|