KoichiYasuoka's picture
initial release
ef65075
raw
history blame
3.31 kB
#! /usr/bin/python3
src="jerteh/gpt2-orao"
tgt="KoichiYasuoka/gpt2-large-serbian-upos"
import os
from transformers import AutoTokenizer,AutoConfig,GPT2ForTokenClassification,DataCollatorForTokenClassification,TrainingArguments,Trainer
from tokenizers.pre_tokenizers import Sequence,Punctuation
for d in ["UD_Serbian-SET","UD_Croatian-SET"]:
os.system("test -d "+d+" || git clone --depth=1 https://github.com/UniversalDependencies/"+d)
os.system("for F in train dev test ; do cat UD_*-SET/*-$F.conllu > $F.conllu ; done")
class UPOSFileDataset(object):
def __init__(self,conllu,tokenizer):
self.conllu=open(conllu,"r",encoding="utf-8")
self.tokenizer=tokenizer
self.seeks=[0]
label=set(["SYM"])
s=self.conllu.readline()
while s!="":
if s=="\n":
self.seeks.append(self.conllu.tell())
else:
w=s.split("\t")
if len(w)==10:
if w[0].isdecimal():
label.add(w[3] if w[5]=="_" else w[3]+"|"+w[5])
s=self.conllu.readline()
lid={}
for i,l in enumerate(sorted(label)):
lid[l],lid["B-"+l],lid["I-"+l]=i*3,i*3+1,i*3+2
self.label2id=lid
def __call__(*args):
lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))}
for t in args:
t.label2id=lid
return lid
def __del__(self):
self.conllu.close()
__len__=lambda self:len(self.seeks)-1
def __getitem__(self,i):
self.conllu.seek(self.seeks[i])
form,upos,sp=[],[],False
while self.conllu.tell()<self.seeks[i+1]:
w=self.conllu.readline().split("\t")
if len(w)==10:
form.append(" "+w[1] if sp else w[1])
if w[0].isdecimal():
upos.append(w[3] if w[5]=="_" else w[3]+"|"+w[5])
sp=w[9].find("SpaceAfter=No")<0
v=self.tokenizer(form,add_special_tokens=False)
i,u=[self.tokenizer.cls_token_id],["SYM"]
for j,(x,y) in enumerate(zip(v["input_ids"],upos)):
if x!=[]:
i+=x
u+=[y] if len(x)==1 else ["B-"+y]+["I-"+y]*(len(x)-1)
if len(i)<self.tokenizer.model_max_length-3:
ids=i+[self.tokenizer.sep_token_id]
upos=u+["SYM"]
else:
ids=i[0:self.tokenizer.model_max_length-2]
upos=u[0:self.tokenizer.model_max_length-2]
return {"input_ids":ids,"labels":[self.label2id[t] for t in upos]}
tkz=AutoTokenizer.from_pretrained(src,cls_token="<s>",pad_token="<pad>",sep_token="</s>",unk_token="<unk>",mask_token="<mask>",bos_token="<s>",eos_token="</s>",model_max_length=1024)
tkz.backend_tokenizer.pre_tokenizer=Sequence([Punctuation(),tkz.backend_tokenizer.pre_tokenizer])
trainDS=UPOSFileDataset("train.conllu",tkz)
devDS=UPOSFileDataset("dev.conllu",tkz)
testDS=UPOSFileDataset("test.conllu",tkz)
lid=trainDS(devDS,testDS)
cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True)
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=16,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False)
trn=Trainer(args=arg,data_collator=DataCollatorForTokenClassification(tkz),model=GPT2ForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True),train_dataset=trainDS)
trn.train()
trn.save_model(tgt)
tkz.save_pretrained(tgt)