KoichiYasuoka
commited on
Commit
·
1abffbe
1
Parent(s):
8edf31a
initial release
Browse files- README.md +30 -0
- config.json +0 -0
- maker.py +75 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +55 -0
- upos.py +41 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- "sr"
|
4 |
+
tags:
|
5 |
+
- "serbian"
|
6 |
+
- "token-classification"
|
7 |
+
- "pos"
|
8 |
+
base_model: jerteh/gpt2-vrabac
|
9 |
+
datasets:
|
10 |
+
- "universal_dependencies"
|
11 |
+
license: "cc-by-sa-4.0"
|
12 |
+
pipeline_tag: "token-classification"
|
13 |
+
widget:
|
14 |
+
- text: "Да има сира и масла и моја би мати знала гибати гибаницу."
|
15 |
+
- text: "Da ima sira i masla i moja bi mati znala gibati gibanicu."
|
16 |
+
---
|
17 |
+
|
18 |
+
# gpt2-small-serbian-upos
|
19 |
+
|
20 |
+
## Model Description
|
21 |
+
|
22 |
+
This is a GPT-2 model in Serbian (Cyrillic and Latin) for POS-tagging, derived from [gpt2-vrabac](https://huggingface.co/jerteh/gpt2-vrabac). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/).
|
23 |
+
|
24 |
+
## How to Use
|
25 |
+
|
26 |
+
```py
|
27 |
+
from transformers import pipeline
|
28 |
+
nlp=pipeline("upos","KoichiYasuoka/gpt2-small-serbian-upos",trust_remote_code=True,aggregation_strategy="simple")
|
29 |
+
```
|
30 |
+
|
config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
maker.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python3
|
2 |
+
src="jerteh/gpt2-vrabac"
|
3 |
+
tgt="KoichiYasuoka/gpt2-small-serbian-upos"
|
4 |
+
|
5 |
+
import os
|
6 |
+
from transformers import AutoTokenizer,AutoConfig,GPT2ForTokenClassification,DataCollatorForTokenClassification,TrainingArguments,Trainer
|
7 |
+
from tokenizers.pre_tokenizers import Sequence,Punctuation
|
8 |
+
for d in ["UD_Serbian-SET","UD_Croatian-SET"]:
|
9 |
+
os.system("test -d "+d+" || git clone --depth=1 https://github.com/UniversalDependencies/"+d)
|
10 |
+
os.system("for F in train dev test ; do cat UD_*-SET/*-$F.conllu > $F.conllu ; done")
|
11 |
+
|
12 |
+
class UPOSFileDataset(object):
|
13 |
+
def __init__(self,conllu,tokenizer):
|
14 |
+
self.conllu=open(conllu,"r",encoding="utf-8")
|
15 |
+
self.tokenizer=tokenizer
|
16 |
+
self.seeks=[0]
|
17 |
+
label=set(["SYM"])
|
18 |
+
s=self.conllu.readline()
|
19 |
+
while s!="":
|
20 |
+
if s=="\n":
|
21 |
+
self.seeks.append(self.conllu.tell())
|
22 |
+
else:
|
23 |
+
w=s.split("\t")
|
24 |
+
if len(w)==10:
|
25 |
+
if w[0].isdecimal():
|
26 |
+
label.add(w[3] if w[5]=="_" else w[3]+"|"+w[5])
|
27 |
+
s=self.conllu.readline()
|
28 |
+
lid={}
|
29 |
+
for i,l in enumerate(sorted(label)):
|
30 |
+
lid[l],lid["B-"+l],lid["I-"+l]=i*3,i*3+1,i*3+2
|
31 |
+
self.label2id=lid
|
32 |
+
def __call__(*args):
|
33 |
+
lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))}
|
34 |
+
for t in args:
|
35 |
+
t.label2id=lid
|
36 |
+
return lid
|
37 |
+
def __del__(self):
|
38 |
+
self.conllu.close()
|
39 |
+
__len__=lambda self:len(self.seeks)-1
|
40 |
+
def __getitem__(self,i):
|
41 |
+
self.conllu.seek(self.seeks[i])
|
42 |
+
form,upos,sp=[],[],False
|
43 |
+
while self.conllu.tell()<self.seeks[i+1]:
|
44 |
+
w=self.conllu.readline().split("\t")
|
45 |
+
if len(w)==10:
|
46 |
+
form.append(" "+w[1] if sp else w[1])
|
47 |
+
if w[0].isdecimal():
|
48 |
+
upos.append(w[3] if w[5]=="_" else w[3]+"|"+w[5])
|
49 |
+
sp=w[9].find("SpaceAfter=No")<0
|
50 |
+
v=self.tokenizer(form,add_special_tokens=False)
|
51 |
+
i,u=[self.tokenizer.cls_token_id],["SYM"]
|
52 |
+
for j,(x,y) in enumerate(zip(v["input_ids"],upos)):
|
53 |
+
if x!=[]:
|
54 |
+
i+=x
|
55 |
+
u+=[y] if len(x)==1 else ["B-"+y]+["I-"+y]*(len(x)-1)
|
56 |
+
if len(i)<self.tokenizer.model_max_length-3:
|
57 |
+
ids=i+[self.tokenizer.sep_token_id]
|
58 |
+
upos=u+["SYM"]
|
59 |
+
else:
|
60 |
+
ids=i[0:self.tokenizer.model_max_length-2]
|
61 |
+
upos=u[0:self.tokenizer.model_max_length-2]
|
62 |
+
return {"input_ids":ids,"labels":[self.label2id[t] for t in upos]}
|
63 |
+
|
64 |
+
tkz=AutoTokenizer.from_pretrained(src,cls_token="<s>",pad_token="<pad>",sep_token="</s>",unk_token="<unk>",mask_token="<mask>",bos_token="<s>",eos_token="</s>",model_max_length=1024)
|
65 |
+
tkz.backend_tokenizer.pre_tokenizer=Sequence([Punctuation(),tkz.backend_tokenizer.pre_tokenizer])
|
66 |
+
trainDS=UPOSFileDataset("train.conllu",tkz)
|
67 |
+
devDS=UPOSFileDataset("dev.conllu",tkz)
|
68 |
+
testDS=UPOSFileDataset("test.conllu",tkz)
|
69 |
+
lid=trainDS(devDS,testDS)
|
70 |
+
cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True)
|
71 |
+
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=24,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False)
|
72 |
+
trn=Trainer(args=arg,data_collator=DataCollatorForTokenClassification(tkz),model=GPT2ForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True),train_dataset=trainDS)
|
73 |
+
trn.train()
|
74 |
+
trn.save_model(tgt)
|
75 |
+
tkz.save_pretrained(tgt)
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:804162a49d627dc14cc304bd95748663e44f1e4c86d9fc1b1820282eb95cdf89
|
3 |
+
size 502644962
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"model_max_length": 1024,
|
51 |
+
"pad_token": "<pad>",
|
52 |
+
"sep_token": "</s>",
|
53 |
+
"tokenizer_class": "GPT2TokenizerFast",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|
upos.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import TokenClassificationPipeline
|
2 |
+
|
3 |
+
class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
|
4 |
+
def __init__(self,**kwargs):
|
5 |
+
import numpy
|
6 |
+
super().__init__(**kwargs)
|
7 |
+
x=self.model.config.label2id
|
8 |
+
y=[k for k in x if not k.startswith("I-")]
|
9 |
+
self.transition=numpy.full((len(x),len(x)),numpy.nan)
|
10 |
+
for k,v in x.items():
|
11 |
+
for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y:
|
12 |
+
self.transition[v,x[j]]=0
|
13 |
+
def check_model_type(self,supported_models):
|
14 |
+
pass
|
15 |
+
def postprocess(self,model_outputs,**kwargs):
|
16 |
+
import numpy
|
17 |
+
if "logits" not in model_outputs:
|
18 |
+
return self.postprocess(model_outputs[0],**kwargs)
|
19 |
+
m=model_outputs["logits"][0].numpy()
|
20 |
+
e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True))
|
21 |
+
z=e/e.sum(axis=-1,keepdims=True)
|
22 |
+
for i in range(m.shape[0]-1,0,-1):
|
23 |
+
m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
|
24 |
+
k=[numpy.nanargmax(m[0]+self.transition[0])]
|
25 |
+
for i in range(1,m.shape[0]):
|
26 |
+
k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
|
27 |
+
w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
|
28 |
+
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
|
29 |
+
for i,t in reversed(list(enumerate(w))):
|
30 |
+
p=t.pop("entity")
|
31 |
+
if p.startswith("I-"):
|
32 |
+
w[i-1]["score"]=min(w[i-1]["score"],t["score"])
|
33 |
+
w[i-1]["end"]=w.pop(i)["end"]
|
34 |
+
elif p.startswith("B-"):
|
35 |
+
t["entity_group"]=p[2:]
|
36 |
+
else:
|
37 |
+
t["entity_group"]=p
|
38 |
+
for t in w:
|
39 |
+
t["text"]=model_outputs["sentence"][t["start"]:t["end"]]
|
40 |
+
return w
|
41 |
+
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|