--- language: - "sr" tags: - "serbian" - "token-classification" - "pos" - "dependency-parsing" base_model: jerteh/gpt2-vrabac datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" widget: - text: "Да има сира и масла и моја би мати знала гибати гибаницу." - text: "Da ima sira i masla i moja bi mati znala gibati gibanicu." --- # gpt2-small-serbian-upos ## Model Description This is a GPT-2 model in Serbian (Cyrillic and Latin) for POS-tagging and dependency-parsing, derived from [gpt2-vrabac](https://huggingface.co/jerteh/gpt2-vrabac). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/). ## How to Use ```py from transformers import pipeline nlp=pipeline("upos","KoichiYasuoka/gpt2-small-serbian-upos",trust_remote_code=True,aggregation_strategy="simple") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/gpt2-small-serbian-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa/GPT models