File size: 6,525 Bytes
d4321fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
#! /usr/bin/python3
import os,json
tgt="KoichiYasuoka/modernbert-base-english-ud-embeds"
url="https://github.com/UniversalDependencies/UD_English-"
for e in ["EWT","GUM","Atis","ParTUT","LinES"]:
u=url+e
d=os.path.basename(u)
os.system("test -d "+d+" || git clone --depth=1 "+u)
s='BEGIN{FS="\\t";OFS="\\t"};{if(NF==10){if($1~/^[1-9][0-9]*-/){split($1,a,"-");if($10~/SpaceAfter=No/)a[2]++}else if($1-a[1]>=0&&$1-a[2]<0)$10=($10=="_")?"SpaceAfter=No":$10"|SpaceAfter=No"}print}'
os.system("for F in train dev test ; do nawk '"+s+"' UD_English-*/*-$F.conllu > $F.conllu ; done")
os.system("""
if test -d transformers
then :
else git clone --depth=1 https://github.com/huggingface/transformers transformers-all
ln -s transformers-all/src/transformers transformers
fi
test -d ModernBERT-base || git clone --depth=1 https://huggingface.co/answerdotai/ModernBERT-base
test -f ModernBERT-base/configuration_modernbert.py || sed 's/^from \\.\\.\\./from transformers./' transformers/models/modernbert/configuration_modernbert.py > ModernBERT-base/configuration_modernbert.py
test -f ModernBERT-base/modeling_modernbert.py || sed -e 's/^from \\.\\.\\./from transformers./' -e 's/^from .* import is_triton_available/import importlib\\nis_triton_available = lambda: importlib.util.find_spec("triton") is not None/' transformers/models/modernbert/modeling_modernbert.py > ModernBERT-base/modeling_modernbert.py
""")
with open("ModernBERT-base/config.json","r",encoding="utf-8") as r:
d=json.load(r)
if not "auto_map" in d:
d["auto_map"]={
"AutoConfig":"configuration_modernbert.ModernBertConfig",
"AutoModel":"modeling_modernbert.ModernBertModel",
"AutoModelForMaskedLM":"modeling_modernbert.ModernBertForMaskedLM",
"AutoModelForSequenceClassification":"modeling_modernbert.ModernBertForSequenceClassification",
"AutoModelForTokenClassification":"modeling_modernbert.ModernBertForTokenClassification"
}
with open("ModernBERT-base/config.json","w",encoding="utf-8") as w:
json.dump(d,w,indent=2)
class UDEmbedsDataset(object):
def __init__(self,conllu,tokenizer,embeddings=None):
self.conllu=open(conllu,"r",encoding="utf-8")
self.tokenizer=tokenizer
self.embeddings=embeddings
self.seeks=[0]
label=set(["SYM","SYM."])
dep=set()
s=self.conllu.readline()
while s!="":
if s=="\n":
self.seeks.append(self.conllu.tell())
else:
w=s.split("\t")
if len(w)==10:
if w[0].isdecimal():
p=w[3]
q="" if w[5]=="_" else "|"+w[5]
d=("|" if w[6]=="0" else "|l-" if int(w[0])<int(w[6]) else "|r-")+w[7]
for k in [p,p+".","B-"+p,"B-"+p+".","I-"+p,"I-"+p+".",p+q+"|_",p+q+d]:
label.add(k)
s=self.conllu.readline()
self.label2id={l:i for i,l in enumerate(sorted(label))}
def __call__(*args):
lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))}
for t in args:
t.label2id=lid
return lid
def __del__(self):
self.conllu.close()
__len__=lambda self:(len(self.seeks)-1)*2
def __getitem__(self,i):
self.conllu.seek(self.seeks[int(i/2)])
z,c,t,s=i%2,[],[""],False
while t[0]!="\n":
t=self.conllu.readline().split("\t")
if len(t)==10 and t[0].isdecimal():
if s:
t[1]=" "+t[1]
c.append(t)
s=t[9].find("SpaceAfter=No")<0
x=[True if t[6]=="0" or int(t[6])>j or sum([1 if int(c[i][6])==j+1 else 0 for i in range(j+1,len(c))])>0 else False for j,t in enumerate(c)]
v=self.tokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"]
if z==0:
ids,upos=[self.tokenizer.cls_token_id],["SYM."]
for i,(j,k) in enumerate(zip(v,c)):
if j==[]:
j=[self.tokenizer.unk_token_id]
p=k[3] if x[i] else k[3]+"."
ids+=j
upos+=[p] if len(j)==1 else ["B-"+p]+["I-"+p]*(len(j)-1)
ids.append(self.tokenizer.sep_token_id)
upos.append("SYM.")
emb=self.embeddings
else:
import torch
if len(x)<128:
x=[True]*len(x)
else:
w=sum([len(x)-i+1 if b else 0 for i,b in enumerate(x)])+1
for i in range(len(x)):
if x[i]==False and w+len(x)-i<8192:
x[i]=True
w+=len(x)-i+1
p=[t[3] if t[5]=="_" else t[3]+"|"+t[5] for i,t in enumerate(c)]
d=[t[7] if t[6]=="0" else "l-"+t[7] if int(t[0])<int(t[6]) else "r-"+t[7] for t in c]
ids,upos=[-1],["SYM|_"]
for i in range(len(x)):
if x[i]:
ids.append(i)
upos.append(p[i]+"|"+d[i] if c[i][6]=="0" else p[i]+"|_")
for j in range(i+1,len(x)):
ids.append(j)
upos.append(p[j]+"|"+d[j] if int(c[j][6])==i+1 else p[i]+"|"+d[i] if int(c[i][6])==j+1 else p[j]+"|_")
ids.append(-1)
upos.append("SYM|_")
with torch.no_grad():
m=[]
for j in v:
if j==[]:
j=[self.tokenizer.unk_token_id]
m.append(self.embeddings[j,:].sum(axis=0))
m.append(self.embeddings[self.tokenizer.sep_token_id,:])
emb=torch.stack(m)
return{"inputs_embeds":emb[ids[:8192],:],"labels":[self.label2id[p] for p in upos[:8192]]}
from transformers import AutoTokenizer,AutoConfig,AutoModelForTokenClassification,DefaultDataCollator,TrainingArguments,Trainer
from tokenizers.pre_tokenizers import Sequence,Split
from tokenizers import Regex
tkz=AutoTokenizer.from_pretrained("ModernBERT-base")
tkz.backend_tokenizer.pre_tokenizer=Sequence([Split(Regex("[nN]['`’][tT]"),"isolated"),tkz.backend_tokenizer.pre_tokenizer])
trainDS=UDEmbedsDataset("train.conllu",tkz)
devDS=UDEmbedsDataset("dev.conllu",tkz)
testDS=UDEmbedsDataset("test.conllu",tkz)
lid=trainDS(devDS,testDS)
cfg=AutoConfig.from_pretrained("ModernBERT-base",num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True,trust_remote_code=True)
mdl=AutoModelForTokenClassification.from_pretrained("ModernBERT-base",config=cfg,ignore_mismatched_sizes=True,trust_remote_code=True)
trainDS.embeddings=mdl.get_input_embeddings().weight
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=1,dataloader_pin_memory=False,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False)
trn=Trainer(args=arg,data_collator=DefaultDataCollator(),model=mdl,train_dataset=trainDS)
trn.train()
trn.save_model(tgt)
tkz.save_pretrained(tgt)
os.system("cp -p ModernBERT-base/*.py "+tgt)
|