|
|
|
src="KoichiYasuoka/modernbert-base-japanese-aozora-luw-upos" |
|
tgt="KoichiYasuoka/modernbert-base-japanese-aozora-ud-embeds" |
|
url="https://github.com/UniversalDependencies/UD_Japanese-GSDLUW" |
|
import os |
|
d=os.path.basename(url) |
|
os.system("test -d "+d+" || git clone --depth=1 "+url) |
|
os.system("for F in train dev test ; do cp "+d+"/*-$F.conllu $F.conllu ; done") |
|
class UDEmbedsDataset(object): |
|
def __init__(self,conllu,tokenizer,embeddings=None): |
|
self.conllu=open(conllu,"r",encoding="utf-8") |
|
self.tokenizer=tokenizer |
|
self.embeddings=embeddings |
|
self.seeks=[0] |
|
label=set(["SYM","SYM."]) |
|
dep=set() |
|
s=self.conllu.readline() |
|
while s!="": |
|
if s=="\n": |
|
self.seeks.append(self.conllu.tell()) |
|
else: |
|
w=s.split("\t") |
|
if len(w)==10: |
|
if w[0].isdecimal(): |
|
p=w[3] |
|
q="" if w[5]=="_" else "|"+w[5] |
|
d=("|" if w[6]=="0" else "|l-" if int(w[0])<int(w[6]) else "|r-")+w[7] |
|
for k in [p,p+".","B-"+p,"B-"+p+".","I-"+p,"I-"+p+".",p+q+"|_",p+q+d]: |
|
label.add(k) |
|
s=self.conllu.readline() |
|
self.label2id={l:i for i,l in enumerate(sorted(label))} |
|
def __call__(*args): |
|
lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))} |
|
for t in args: |
|
t.label2id=lid |
|
return lid |
|
def __del__(self): |
|
self.conllu.close() |
|
__len__=lambda self:(len(self.seeks)-1)*2 |
|
def __getitem__(self,i): |
|
self.conllu.seek(self.seeks[int(i/2)]) |
|
z,c,t,s=i%2,[],[""],False |
|
while t[0]!="\n": |
|
t=self.conllu.readline().split("\t") |
|
if len(t)==10 and t[0].isdecimal(): |
|
if s: |
|
t[1]=" "+t[1] |
|
c.append(t) |
|
s=t[9].find("SpaceAfter=No")<0 |
|
x=[True if t[6]=="0" or int(t[6])>j or sum([1 if int(c[i][6])==j+1 else 0 for i in range(j+1,len(c))])>0 else False for j,t in enumerate(c)] |
|
v=self.tokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"] |
|
if z==0: |
|
ids,upos=[self.tokenizer.cls_token_id],["SYM."] |
|
for i,(j,k) in enumerate(zip(v,c)): |
|
if j==[]: |
|
j=[self.tokenizer.unk_token_id] |
|
p=k[3] if x[i] else k[3]+"." |
|
ids+=j |
|
upos+=[p] if len(j)==1 else ["B-"+p]+["I-"+p]*(len(j)-1) |
|
ids.append(self.tokenizer.sep_token_id) |
|
upos.append("SYM.") |
|
emb=self.embeddings |
|
else: |
|
import torch |
|
if len(x)<128: |
|
x=[True]*len(x) |
|
else: |
|
w=sum([len(x)-i+1 if b else 0 for i,b in enumerate(x)])+1 |
|
for i in range(len(x)): |
|
if x[i]==False and w+len(x)-i<8192: |
|
x[i]=True |
|
w+=len(x)-i+1 |
|
p=[t[3] if t[5]=="_" else t[3]+"|"+t[5] for i,t in enumerate(c)] |
|
d=[t[7] if t[6]=="0" else "l-"+t[7] if int(t[0])<int(t[6]) else "r-"+t[7] for t in c] |
|
ids,upos=[-1],["SYM|_"] |
|
for i in range(len(x)): |
|
if x[i]: |
|
ids.append(i) |
|
upos.append(p[i]+"|"+d[i] if c[i][6]=="0" else p[i]+"|_") |
|
for j in range(i+1,len(x)): |
|
ids.append(j) |
|
upos.append(p[j]+"|"+d[j] if int(c[j][6])==i+1 else p[i]+"|"+d[i] if int(c[i][6])==j+1 else p[j]+"|_") |
|
ids.append(-1) |
|
upos.append("SYM|_") |
|
with torch.no_grad(): |
|
m=[] |
|
for j in v: |
|
if j==[]: |
|
j=[self.tokenizer.unk_token_id] |
|
m.append(self.embeddings[j,:].sum(axis=0)) |
|
m.append(self.embeddings[self.tokenizer.sep_token_id,:]) |
|
emb=torch.stack(m) |
|
return{"inputs_embeds":emb[ids[:8192],:],"labels":[self.label2id[p] for p in upos[:8192]]} |
|
from transformers import AutoTokenizer,AutoConfig,AutoModelForTokenClassification,DefaultDataCollator,TrainingArguments,Trainer |
|
from tokenizers.pre_tokenizers import Sequence,Split |
|
from tokenizers import Regex |
|
tkz=AutoTokenizer.from_pretrained(src) |
|
trainDS=UDEmbedsDataset("train.conllu",tkz) |
|
devDS=UDEmbedsDataset("dev.conllu",tkz) |
|
testDS=UDEmbedsDataset("test.conllu",tkz) |
|
lid=trainDS(devDS,testDS) |
|
cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True,trust_remote_code=True) |
|
mdl=AutoModelForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True,trust_remote_code=True) |
|
trainDS.embeddings=mdl.get_input_embeddings().weight |
|
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=1,dataloader_pin_memory=False,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False) |
|
trn=Trainer(args=arg,data_collator=DefaultDataCollator(),model=mdl,train_dataset=trainDS) |
|
trn.train() |
|
trn.save_model(tgt) |
|
tkz.save_pretrained(tgt) |
|
|