|
|
|
"""PiechartOnAI.ipynb |
|
|
|
Automatically generated by Colaboratory. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/17oqp758ffviqvK2q7mzgXY0VOJN6WLET |
|
""" |
|
|
|
import tensorflow as tf |
|
import pandas as pd |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
df = pd.read_csv('test1.csv') |
|
slices = df['Slices'] |
|
randomness = df['Randomness'] |
|
|
|
from sklearn.preprocessing import MinMaxScaler |
|
scaler = MinMaxScaler() |
|
slices_norm = scaler.fit_transform(slices.values.reshape(-1, 1)) |
|
randomness_norm = scaler.fit_transform(randomness.values.reshape(-1, 1)) |
|
|
|
|
|
inputs1 = tf.keras.layers.Input(shape=(1,)) |
|
inputs2 = tf.keras.layers.Input(shape=(1,)) |
|
x1 = tf.keras.layers.Dense(8, activation='relu')(inputs1) |
|
x2 = tf.keras.layers.Dense(8, activation='relu')(inputs2) |
|
x = tf.keras.layers.Concatenate()([x1, x2]) |
|
output = tf.keras.layers.Dense(1, activation='sigmoid')(x) |
|
|
|
y = slices_norm + randomness_norm |
|
y = y / np.sum(y) |
|
|
|
model = tf.keras.models.Model(inputs=[inputs1, inputs2], outputs=output) |
|
model.compile(loss='mse', optimizer='adam') |
|
|
|
|
|
history = model.fit([slices_norm, randomness_norm], y, epochs=100, batch_size=32) |
|
|
|
|
|
slices_input = np.array([[0.25]]) |
|
randomness_input = np.array([[0.75]]) |
|
|
|
|
|
prediction = model.predict([slices_input, randomness_input]) |
|
prediction = prediction[0][0] |
|
|
|
|
|
labels = ['Elfogultságok','Vesztség','Súlyok','Véletlenszerűség'] |
|
sizes = [slices_input[0][0]*prediction*100, slices_input[0][0]*(1-prediction)*100, (1-slices_input[0][0])*prediction*100, (1-slices_input[0][0])*(1-prediction)*100] |
|
explode = (0, 0, 0, 0.1) |
|
fig1, ax1 = plt.subplots() |
|
ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) |
|
ax1.axis('equal') |
|
plt.show() |
|
print("Véletlenszerűség (mennyire véletlenszerű az előrejelzés)") |
|
print("Veszteség (Ha a veszteség nagy, az azt jelenti, hogy a tévedés nagy, különben a tévedés kicsi") |
|
print("Súlyok (mennyit ér a tévedés az egyes neuronokon)") |
|
print("Elfogultságok (Milyen jó az előrejelzés)") |
|
|
|
|