Kudod commited on
Commit
7bd3d9d
1 Parent(s): 214229f

End of training

Browse files
Files changed (2) hide show
  1. README.md +77 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: FacebookAI/xlm-roberta-large
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: roberta-large-ner-ghtk-gam-7-label-new-data-3090-13Sep-1
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # roberta-large-ner-ghtk-gam-7-label-new-data-3090-13Sep-1
15
+
16
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.3314
19
+ - Hiều cao khách hàng: {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20}
20
+ - Oại da: {'precision': 0.8571428571428571, 'recall': 0.782608695652174, 'f1': 0.8181818181818182, 'number': 23}
21
+ - Àu da: {'precision': 0.7, 'recall': 0.5526315789473685, 'f1': 0.6176470588235295, 'number': 38}
22
+ - Áng khuôn mặt: {'precision': 0.8235294117647058, 'recall': 0.875, 'f1': 0.8484848484848485, 'number': 16}
23
+ - Áng người: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13}
24
+ - Ân nặng khách hàng: {'precision': 0.9333333333333333, 'recall': 0.9032258064516129, 'f1': 0.9180327868852459, 'number': 31}
25
+ - Ặc điểm khác của da: {'precision': 0.7666666666666667, 'recall': 0.8214285714285714, 'f1': 0.793103448275862, 'number': 28}
26
+ - Overall Precision: 0.8354
27
+ - Overall Recall: 0.8107
28
+ - Overall F1: 0.8228
29
+ - Overall Accuracy: 0.9519
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 2.5e-05
49
+ - train_batch_size: 4
50
+ - eval_batch_size: 4
51
+ - seed: 42
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - num_epochs: 10
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Hiều cao khách hàng | Oại da | Àu da | Áng khuôn mặt | Áng người | Ân nặng khách hàng | Ặc điểm khác của da | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | No log | 1.0 | 141 | 0.2557 | {'precision': 0.95, 'recall': 0.95, 'f1': 0.9500000000000001, 'number': 20} | {'precision': 0.7222222222222222, 'recall': 0.5652173913043478, 'f1': 0.6341463414634146, 'number': 23} | {'precision': 0.6785714285714286, 'recall': 0.5, 'f1': 0.5757575757575758, 'number': 38} | {'precision': 0.8333333333333334, 'recall': 0.625, 'f1': 0.7142857142857143, 'number': 16} | {'precision': 0.8666666666666667, 'recall': 1.0, 'f1': 0.9285714285714286, 'number': 13} | {'precision': 0.9, 'recall': 0.8709677419354839, 'f1': 0.8852459016393444, 'number': 31} | {'precision': 0.5142857142857142, 'recall': 0.6428571428571429, 'f1': 0.5714285714285714, 'number': 28} | 0.7532 | 0.7041 | 0.7278 | 0.9254 |
61
+ | No log | 2.0 | 282 | 0.1904 | {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 20} | {'precision': 0.782608695652174, 'recall': 0.782608695652174, 'f1': 0.782608695652174, 'number': 23} | {'precision': 0.6333333333333333, 'recall': 0.5, 'f1': 0.5588235294117647, 'number': 38} | {'precision': 0.8421052631578947, 'recall': 1.0, 'f1': 0.9142857142857143, 'number': 16} | {'precision': 0.9285714285714286, 'recall': 1.0, 'f1': 0.962962962962963, 'number': 13} | {'precision': 0.9333333333333333, 'recall': 0.9032258064516129, 'f1': 0.9180327868852459, 'number': 31} | {'precision': 0.6875, 'recall': 0.7857142857142857, 'f1': 0.7333333333333334, 'number': 28} | 0.8 | 0.8047 | 0.8024 | 0.9436 |
62
+ | No log | 3.0 | 423 | 0.2762 | {'precision': 0.9473684210526315, 'recall': 0.9, 'f1': 0.9230769230769231, 'number': 20} | {'precision': 0.9047619047619048, 'recall': 0.8260869565217391, 'f1': 0.8636363636363636, 'number': 23} | {'precision': 0.6785714285714286, 'recall': 0.5, 'f1': 0.5757575757575758, 'number': 38} | {'precision': 0.8, 'recall': 0.75, 'f1': 0.7741935483870969, 'number': 16} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.9285714285714286, 'recall': 0.8387096774193549, 'f1': 0.8813559322033899, 'number': 31} | {'precision': 0.6666666666666666, 'recall': 0.7857142857142857, 'f1': 0.721311475409836, 'number': 28} | 0.8217 | 0.7633 | 0.7914 | 0.9428 |
63
+ | 0.4074 | 4.0 | 564 | 0.2128 | {'precision': 0.8571428571428571, 'recall': 0.9, 'f1': 0.8780487804878048, 'number': 20} | {'precision': 0.7391304347826086, 'recall': 0.7391304347826086, 'f1': 0.7391304347826085, 'number': 23} | {'precision': 0.6774193548387096, 'recall': 0.5526315789473685, 'f1': 0.6086956521739131, 'number': 38} | {'precision': 0.8235294117647058, 'recall': 0.875, 'f1': 0.8484848484848485, 'number': 16} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.8787878787878788, 'recall': 0.9354838709677419, 'f1': 0.90625, 'number': 31} | {'precision': 0.8620689655172413, 'recall': 0.8928571428571429, 'f1': 0.8771929824561403, 'number': 28} | 0.8204 | 0.8107 | 0.8155 | 0.9544 |
64
+ | 0.4074 | 5.0 | 705 | 0.2746 | {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} | {'precision': 0.9, 'recall': 0.782608695652174, 'f1': 0.8372093023255814, 'number': 23} | {'precision': 0.7, 'recall': 0.5526315789473685, 'f1': 0.6176470588235295, 'number': 38} | {'precision': 0.7333333333333333, 'recall': 0.6875, 'f1': 0.7096774193548386, 'number': 16} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.9333333333333333, 'recall': 0.9032258064516129, 'f1': 0.9180327868852459, 'number': 31} | {'precision': 0.75, 'recall': 0.8571428571428571, 'f1': 0.7999999999999999, 'number': 28} | 0.8282 | 0.7988 | 0.8133 | 0.9469 |
65
+ | 0.4074 | 6.0 | 846 | 0.2722 | {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} | {'precision': 0.8095238095238095, 'recall': 0.7391304347826086, 'f1': 0.7727272727272727, 'number': 23} | {'precision': 0.6774193548387096, 'recall': 0.5526315789473685, 'f1': 0.6086956521739131, 'number': 38} | {'precision': 0.7222222222222222, 'recall': 0.8125, 'f1': 0.7647058823529411, 'number': 16} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.9333333333333333, 'recall': 0.9032258064516129, 'f1': 0.9180327868852459, 'number': 31} | {'precision': 0.7333333333333333, 'recall': 0.7857142857142857, 'f1': 0.7586206896551724, 'number': 28} | 0.8072 | 0.7929 | 0.8000 | 0.9494 |
66
+ | 0.4074 | 7.0 | 987 | 0.3018 | {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} | {'precision': 0.7727272727272727, 'recall': 0.7391304347826086, 'f1': 0.7555555555555555, 'number': 23} | {'precision': 0.7352941176470589, 'recall': 0.6578947368421053, 'f1': 0.6944444444444445, 'number': 38} | {'precision': 0.8125, 'recall': 0.8125, 'f1': 0.8125, 'number': 16} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.9333333333333333, 'recall': 0.9032258064516129, 'f1': 0.9180327868852459, 'number': 31} | {'precision': 0.7666666666666667, 'recall': 0.8214285714285714, 'f1': 0.793103448275862, 'number': 28} | 0.8274 | 0.8225 | 0.8249 | 0.9502 |
67
+ | 0.0884 | 8.0 | 1128 | 0.3299 | {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} | {'precision': 0.8095238095238095, 'recall': 0.7391304347826086, 'f1': 0.7727272727272727, 'number': 23} | {'precision': 0.6774193548387096, 'recall': 0.5526315789473685, 'f1': 0.6086956521739131, 'number': 38} | {'precision': 0.8333333333333334, 'recall': 0.9375, 'f1': 0.8823529411764706, 'number': 16} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.9354838709677419, 'recall': 0.9354838709677419, 'f1': 0.9354838709677419, 'number': 31} | {'precision': 0.7931034482758621, 'recall': 0.8214285714285714, 'f1': 0.8070175438596492, 'number': 28} | 0.8313 | 0.8166 | 0.8239 | 0.9511 |
68
+ | 0.0884 | 9.0 | 1269 | 0.3286 | {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} | {'precision': 0.8571428571428571, 'recall': 0.782608695652174, 'f1': 0.8181818181818182, 'number': 23} | {'precision': 0.7333333333333333, 'recall': 0.5789473684210527, 'f1': 0.6470588235294117, 'number': 38} | {'precision': 0.8235294117647058, 'recall': 0.875, 'f1': 0.8484848484848485, 'number': 16} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.9333333333333333, 'recall': 0.9032258064516129, 'f1': 0.9180327868852459, 'number': 31} | {'precision': 0.8, 'recall': 0.8571428571428571, 'f1': 0.8275862068965518, 'number': 28} | 0.8476 | 0.8225 | 0.8348 | 0.9527 |
69
+ | 0.0884 | 10.0 | 1410 | 0.3314 | {'precision': 0.8695652173913043, 'recall': 1.0, 'f1': 0.9302325581395349, 'number': 20} | {'precision': 0.8571428571428571, 'recall': 0.782608695652174, 'f1': 0.8181818181818182, 'number': 23} | {'precision': 0.7, 'recall': 0.5526315789473685, 'f1': 0.6176470588235295, 'number': 38} | {'precision': 0.8235294117647058, 'recall': 0.875, 'f1': 0.8484848484848485, 'number': 16} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} | {'precision': 0.9333333333333333, 'recall': 0.9032258064516129, 'f1': 0.9180327868852459, 'number': 31} | {'precision': 0.7666666666666667, 'recall': 0.8214285714285714, 'f1': 0.793103448275862, 'number': 28} | 0.8354 | 0.8107 | 0.8228 | 0.9519 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.44.0
75
+ - Pytorch 2.3.1+cu121
76
+ - Datasets 2.19.1
77
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b9908c804a914f75e5f987bc063cd5e91074fbee428b592bdaccd3d8a3c9a386
3
  size 2235444656
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ad48048742fae84575c290d3f1656545ff07cf32e555c75dc28cebc946f79fd
3
  size 2235444656