File size: 2,280 Bytes
92b3175 ee8db18 92b3175 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
tags:
- merge
- mergekit
- lazymergekit
- liminerity/M7-7b
- MTSAIR/multi_verse_model
- Kukedlc/NeuralSirKrishna-7b
- Kukedlc/NeuralMaths-Experiment-7b
- Kukedlc/Neural4gsm8k
base_model:
- liminerity/M7-7b
- MTSAIR/multi_verse_model
- Kukedlc/NeuralSirKrishna-7b
- Kukedlc/NeuralMaths-Experiment-7b
- Kukedlc/Neural4gsm8k
license: apache-2.0
---
# Neural-4-Maths-7b
Neural-4-Maths-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [liminerity/M7-7b](https://huggingface.co/liminerity/M7-7b)
* [MTSAIR/multi_verse_model](https://huggingface.co/MTSAIR/multi_verse_model)
* [Kukedlc/NeuralSirKrishna-7b](https://huggingface.co/Kukedlc/NeuralSirKrishna-7b)
* [Kukedlc/NeuralMaths-Experiment-7b](https://huggingface.co/Kukedlc/NeuralMaths-Experiment-7b)
* [Kukedlc/Neural4gsm8k](https://huggingface.co/Kukedlc/Neural4gsm8k)
## 🧩 Configuration
```yaml
models:
- model: Kukedlc/NeuralSirKrishna-7b
# No parameters necessary for base model
- model: liminerity/M7-7b
parameters:
density: 0.66
weight: 0.2
- model: MTSAIR/multi_verse_model
parameters:
density: 0.66
weight: 0.2
- model: Kukedlc/NeuralSirKrishna-7b
parameters:
density: 0.66
weight: 0.2
- model: Kukedlc/NeuralMaths-Experiment-7b
parameters:
density: 0.44
weight: 0.2
- model: Kukedlc/Neural4gsm8k
parameters:
density: 0.44
weight: 0.2
merge_method: dare_ties
base_model: Kukedlc/NeuralSirKrishna-7b
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/Neural-4-Maths-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |